Annales Des Télécommunications

, Volume 50, Issue 7–8, pp 603–616 | Cite as

Rate constraints for video transmission over atm networks based on joint source/network criteria

  • Antonio Ortega
  • Mark W. Garrett
  • Martin Vetterli


In this paper, we study the rate constraints required for variable rate video transmission over atm networks. Our objective is to achieve both good source quality and efficient network utilization. We show that these objectives may not be achieved simultaneously unless both network and source coding considerations are taken into account. In particular, we show that, given a rate constraint, a greedy source coding strategy will reduce the potential for statistical multiplexing gain in the network. We propose two alternative methods to achieve our goals. The first method requires non-greedy source coding techniques, implementable through rate control, such that video encoders will only use the bit rate needed to achieve a certain, nearly constant quality level. As a consequence, low activity scenes will use a fraction of the maximum allowable bit rate. The second method calls for increasing the number of rate constraints imposed on each connection so that the amount of bandwidth used in the worst case (it by greedy coders) is limited. Experimental results for a medium length (5 min) video sequence are given.

Key words

atm Videocommunication service Traffic control Variable bit rate Quality of service Statistical multiplexing Picture coding 

Contraintes sur le Débit Prenant en Compte à la Fois des Critères de Source et de Réseau Pour une Transmission Vidéo sur Réseau ATM


Dans cet article les contraintes devant être imposées sur le débit de transmissions vidéo sur réseaux atm sont étudiées. Ľ objectif est ďobtenir une bonne qualité pour la source, ainsi qu’une utilisation efficace du réseau. Ces deux objectifs ne peuvent pas être atteints si les critères de source et de réseau ne sont pas pris en compte simultanément. En particulier, un codage de source glouton réduit le potentiel pour le gain de multiplexage statistique. Deux methodes pour atteindre ce but sont proposées. Une première methodefait appel à un codage de source non glouton, tel que ľ objectif du codeur vidéo est de maintenir une qualite constante. Dans ce cas, les scènes contenant peu ďactivité utiliseront un nombre de bits réduit. La deuxième méthode consiste à augmenter le nombre de contraintes imposées sur le débit vidéo de façon à limiter le nombre de bits utilisés dans le pire cas (c’ est-à-dire dans le cas du codeur glouton). Des résultats expérimentaux pour une séquence vidéo de durée moyenne (5 min) sont présentés.

Mots clés

Multiplexage temporel asynchrone Service vidéocommunication Maîtrise trafic Débit transmission variable Qualité service Multiplexage statistique Codage image 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ortega (A.), Garrett (M. W.), Vetterli (M.). Toward joint optimization of vbr video coding and packet network traffic control.Proc. of the 5th Packet Video Workshop, Berlin (March 1993).Google Scholar
  2. [2]
    Ortega (A.), Vetterli (M.). Multiple leaky buckets for increased statistical multiplexing of atm video.Proc. of the 6th Packet Video Workshop, Portland, OR (Sep. 1994).Google Scholar
  3. [3]
    Eleftheriadis (A.), Pejhan (S.), Anastassiou (D.). Algorithms and performance evaluation of the Xphone multimedia communication system.Proc. of the ACM Multimedia 93 Conf, Anaheim, CA (Aug. 1993), pp. 311–320.Google Scholar
  4. [4]
    Macedonia (M.), Brutzman (D.). Bone provides audio and video across the Internet.Computer (Apr. 1994),27, pp. 30–36.CrossRefGoogle Scholar
  5. [5]
    Bolot (J.-C.), Turletti (T.). A rate control mechanism for packet video in the internet.Proc. of Infocom’94, Toronto (June 1994), pp. 1216–1223.Google Scholar
  6. [6]
    ***. ATM Forum. ATMuser-network interface specification, Version 3.0. Prentice-Hall (1993).Google Scholar
  7. [7]
    Maglaris (B.), Anastassiou (D.), Sen (P.), Karlsson (G.), Robbins (J.). Performance models of statistical multiplexing in packet video communications.IEEE Trans. COM (July 1988),36, pp. 834–843.CrossRefGoogle Scholar
  8. [8]
    Sen (P.), Maglaris (B.), Rikli (N.), Anastassiou (D.). Models for packet switching of variable-bit-rate video sources.IEEE J. SAC (June 1989),7, pp. 865–869.Google Scholar
  9. [9]
    Douglas (P.), Vetterli (M.). Statistical analysis of the output rate of two variable bit-rate video coders.Proc. of the 3rd Packet Video Workshop, Morristown, NJ (March 1990).Google Scholar
  10. [10]
    Verbiest (W.), Pinnoo (L.), Voeten (B.). The impact of the ATM concept on video coding.IEEE J. SAC (Dec. 1988),6, pp. 1623–1632.Google Scholar
  11. [11]
    ***. Special issue on packet speech and video.IEEE J. SAC (Apr. 1991).Google Scholar
  12. [12]
    ***. Special issue on packet video.IEEE Trans. CSVT (June 1993).Google Scholar
  13. [13]
    Garrett (M. W.). Contributions toward real-time services on packet switched networks.PhD thesis, Dept. of Electrical Eng., Columbia Univ. (1993).Google Scholar
  14. [14]
    Rigolio (G.), Verri (L.), Fratta (L.). Source control and shaping in atm networks.In: Globecom’91, Phoenix (1991).Google Scholar
  15. [15]
    Reibman (A. R.), Haskell (B. G.). Constraints on variable bitrate video for ATM networks.IEEE Trans. CAS (Dec. 1992),2, pp. 361–372.Google Scholar
  16. [16]
    Turner (J. S.). New directions in communications (or which way to the information age?).IEEE COM Mag. (Oct. 1986),24, pp. 8–15.CrossRefGoogle Scholar
  17. [17]
    Rathgeb (E. P.). Modeling and performance comparison of policing mechanisms for ATM networks.IEEE J. SAC (Apr. 1991),9, pp. 325–334.Google Scholar
  18. [18]
    Darragh (J. C.), Baker (R. L.). Fixed distortion subband coding of images for packet-switched networks.IEEE J. SAC (June 1989),7, pp. 789–800.Google Scholar
  19. [19]
    Heeke (H.). A traffic-control algorithm for ATM networks.IEEE Trans. CSVT (June 1993),3, pp. 182–189.Google Scholar
  20. [20]
    Ortega (A.), Ramchandran (K.), Vetterli (M.). Optimal trellisbased buffered compression and fast approximations.IEEE Trans. IP (Jan. 1994),3, pp. 26–40.Google Scholar
  21. [21]
    Zdepsky (J.), Raychaudhuri (D.), Joseph (K.). Statistically based buffer control policies for constant rate transmission of compressed digital video.IEEE Trans. COM (June 1991),39, pp. 947–957.CrossRefGoogle Scholar
  22. [22]
    Chen (C.-T.), Wong (A.). A self-governing rate buffer control strategy for pseudo-constant bit rate video coding.IEEE Trans. IP (Jan. 1993),2, pp. 50–59.Google Scholar
  23. [23]
    Parekh (A. K.), Gallager (R. G.). A generalized processor sharing approach to flow control in integrated services networks: the single node case.IEEE/ACM Trans. N (June 1993),1, pp. 334–357.Google Scholar
  24. [24]
    ***. jpeg technical specification: Revision (Draft), joint photographic experts group, ISO/IEC JTC1/SC2/WG8, CCITT SGVIII (Aug. 1990).Google Scholar
  25. [25]
    Leduc (J.-P.), Agostino (S. ď). Universal vbr videocodecs for atm networks in the Belgian broadband experiment.Image Communication (June 1991),3, pp. 157–165.Google Scholar
  26. [26]
    Skelly (P.), Schwartz (M.), Dixit (S.). A histogram-based model for video traffic behavior in an atm multiplexer.IEEE/ACM Trans. N (Aug. 1993),1, pp. 446–459.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Antonio Ortega
    • 1
  • Mark W. Garrett
    • 1
  • Martin Vetterli
    • 1
  1. 1.Dept. of Electrical Engineering Signal and Image Processing InstituteUniversity of Southern California 3740 McClintock AvenueUSA.

Personalised recommendations