Skip to main content
Log in

On the construction of group block codes

Construction de codes en blocs sur des groupes

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

We consider the construction of group block codes, i.e., subgroups of Gn, the n-fold direct product of a group G. Two concepts are introduced that make this construction similar to that of codes over gf(2). The first concept is that of an indecomposable code. The second is that of a parity-check matrix. As a result, group block codes over a decomposable Abelian group of exponent dm can be seen as block codes over the ring of residues modulo dm, and their minimum Hamming distance can be easily determined. We also prove that, under certain technical conditions, (n, k) systematic group block codes over non-Abelian groups are asymptotically bad, in the sense that their minimum Hamming distance cannot exceed [n/k].

Résumé

On considère la construction de codes en bloc sur des groupes, c’est-à-dire de sous-groupes de Gn, le produit direct n fois ďun groupe G par lui-même. Deux concepts introduits rendent cette construction similaire à celle des codes sur gf(2). Le premier est celui ďun code indécomposable. Le second et celui ďune matrice de vérification de parité. Il en résulte que des codes en bloc sur un groupe abélien décomposable ďexposant dm peuvent être interprétés comme des codes en bloc sur ľanneau des résidus modulo dm, et leur distance de Hamming minimale peut aisément être déterminée. On montre aussi que, sous certaines conditions techniques, les codes en bloc (n, k) systématiques sur des groupes non abéliens sont asymptotiquement mauvais, en ce sens que leur distance de Hamming minimale ne peut pas dépasser [n/k].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis (C. W.), Reiner (I.). Representation theory of finite groups and associative algebras.Wiley-Interscience, New York (1962).

    MATH  Google Scholar 

  2. Forney (G. D. Jr). On the Hamming distance property of group codes.IEEE Trans. IT (Nov. 1992),38, n° 6, pp. 1797–1801.

    Article  MATH  MathSciNet  Google Scholar 

  3. Kurosh (A. G.). The theory of groups. Vol. 1.Chelsea Publishers, New York (1960).

    Google Scholar 

  4. Loeliger (H. A.). Signal sets matched to groups.IEEE Trans. IT (Nov. 1991),37, n° 6, pp. 1675–1682.

    Article  MATH  MathSciNet  Google Scholar 

  5. Loeliger (H.-A.). On Euclidean-space group codes. Ph.D. Dissertation, Swiss Federal Institute of Technology, Zürich, Switzerland (1992).

    Google Scholar 

  6. Loeliger (H.-A.),Mittelholzer (T.). Linear codes over groups and new Slepian-type signal sets.Proc. 1991 IEEE International Symposium on Inform. Theory, Budapest, Hungary (June 24–28, 1991).

  7. Rotman (J. J.). An introduction to the theory of groups. Dubuque, Iowa: Wm.C. Brown Publishers (1988).

    Google Scholar 

  8. Rose (J. S.). A course on group theory.Univ. Press, Cambridge (1978).

    MATH  Google Scholar 

  9. Slepian (D.). Group codes for the Gaussian channel.Bell Syst. Tech. J. (Apr. 1968),47, pp. 575–602.

    MATH  MathSciNet  Google Scholar 

  10. Thomas (A. D.),Wood (G. V.). Group tables. Orpington :Shiva Pub. Limited (1980).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was sponsored by the Italian National Research Council (cnr) under Progetto Finalizzato Trasporti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biglieri, E., Elia, M. On the construction of group block codes. Ann. Télécommun. 50, 817–823 (1995). https://doi.org/10.1007/BF02997785

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02997785

Key words

Mots clés

Navigation