Advertisement

Annales Des Télécommunications

, Volume 53, Issue 7–8, pp 316–319 | Cite as

Relation entre la transformation de coordonnÉes de la fonction d’ambiguÏtÉ et la transformation de fourier fractionnaire

  • Igor DjuroviĆ
  • LJubiša StankoviĆ
Article
  • 171 Downloads

Résumé

Il a été montré que la transformation de Fourier fractionnaire, qui a fait l’objet d’études récentes intensives en mathématique, en mécanique quantique, en optique et en traitement du signal, peut-être obtenue comme cas spécial des transformations de coordonnées linéaires de la fonction d’ambiguïté ou de la distribution de Wigner. Quelques applications de la transformation de Fourier fractionnaire à l’analyse temps-fréquence sont présentées.

Relationship between the ambiguity function coordinate transformations and the fractional Fourier transform

Abstract

It has been shown that the fractional Fourier transform, recently very intensively investigated in mathematics, quantum mechanics, optics and signal processing, can be obtained as a special case of the earlier introduced linear coordinate transformations of the ambiguity function or Wigner distribution. Some applications of the generalized fractional transform on the time-frequency analysis are presented.

Key words

Fourier transform Fractional number Mathematical transformation Ambiguity function Frequency time representation Signal analysis 

Mots clés

Transformation Fourier Nombre fractionnaire Transformation mathématique Fonction ambiguïté Représentation temps fréquence Analyse signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Namias (V.): The fractional order Fourier transform and its application to quantum mechanics,J. Inst. Math. Appl. 25, pp. 241–265, (1980).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Lohmann (A. W.): Image rotation, Wigner rotation and fractional Fourier transform,J. Opt. Soc. Amer A. 10, pp. 2181–2186, (1993).CrossRefGoogle Scholar
  3. [3]
    Lohmann (A. W.), Soffer (B. H.): Relation between the Radon-Wigner and fractional Fourier transform,J. Opt. Soc. Amer. A. 11, pp. 1798–1801, (1994).CrossRefMathSciNetGoogle Scholar
  4. [4]
    Almeida (L. B.): The fractional Fourier transform and time-frequency representations,IEEE Trans. Signal Processing. 42, pp. 3084–3091,(1994).CrossRefGoogle Scholar
  5. [5]
    Zayed (A. I.): On the relationship between the Fourier transform and fractional Fourier transform,IEEE Signal Processing Letters, 3, no.12, pp. 310–211, (1996).CrossRefGoogle Scholar
  6. [6]
    Santhanam (B.), McClellan (J. H.): The discrete rational Fourier transform,IEEE Trans, on Signal Processing, 44, no. 4, (April 1996), pp. 994–997.CrossRefGoogle Scholar
  7. [7]
    Mcbride (A. C), Keer (F. H.): The discrete rational Fourier transform,IMA J. Appl. Math.,39, pp. 159–175, (1987).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Almeida (L.B.),: Product and convolution theorems for the fractional Fourier transform,IEEE Signal Processing Letters, 4, no.1, (Jan. 1997), pp. 15–17.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Weyl (N.): Quantenmechanik und groupentheorie,Ztsch. f. Physik,46, pp. 1–47,(1927).CrossRefGoogle Scholar
  10. [10]
    Wiener (N.): Hermintian polynomials and Fourier analysis,J. Math. Phys. MIT,8, pp. 70–73, (1929).Google Scholar
  11. [11]
    Harms (B.): Computing time-frequency distributions,IEEE Trans, on Signal Processing,39, no. 3, pp. 727–729, (March 1991).CrossRefGoogle Scholar
  12. [12]
    RiSTic (B.), Boashash (B.): Kernel design for time-frequency signal analysis using the Radon transform,IEEE Trans, on Signal Processing,41, no. 5, pp. 1996–2008, (May 1995).CrossRefGoogle Scholar
  13. [13]
    Wood (J. C), Barry (D. T.): Linear signal synthesis using the Radon-Wigner distribution,IEEE Trans, on Signal Processing,42, no. 8, pp. 2105–2111, (Aug. 1994).CrossRefGoogle Scholar
  14. [14]
    Wood (J. C), Barry (D. T.): Radon transform of time-frequency distributions for analysis of multicomponent signals,IEEE Trans, on Signal Processing,42, no. 11, pp. 3166–3177, (Nov 1994)CrossRefGoogle Scholar
  15. [15]
    Boashash (B.): Estimating and interpreting the instantaneous frequency of a signal-Part I Fundamentals,IEEE Proc. 80, no. 4, pp. 519–538, (April 1992).Google Scholar
  16. [16]
    Papoulis (A.): Ambiguity function in Fourier optics,J. opt. Soc. Amer.,64, no. 6, pp. 779–788, (June 1974).CrossRefGoogle Scholar
  17. [17]
    Papoulis (A.): Signal analysis,McGraw Hill Book Company, New York, pp. 287–289, (1977).MATHGoogle Scholar
  18. [18]
    Sadowsky (J.) : An application of the Weyl theory to signal processing, inProc. 23rd Asilomar Conf., Circuits, Syst., Compy, pp. 628–632, (1989).Google Scholar
  19. [19]
    Stankovic’ (S.): Wigner distribution in signal analysis Master thesis, University of Zagred. Croatia, pp. 20–25, (1992).Google Scholar
  20. [20]
    Stankovic’ (L. J.): An analysis of instantaneous frequency presentation using time-frequency distributions -Generalized Wigner distribution,IEEE Trans, on Signal Processing,43, no. 2, pp. 549–552, (Feb. 1995).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  1. 1.Elektrotehnicki fakultetPodgoricaYugoslavia
  2. 2.Ruhr University Bochum, Signal Theory GroupBochumGermany

Personalised recommendations