Advertisement

Annales Des Télécommunications

, Volume 52, Issue 11–12, pp 575–587 | Cite as

Polarization control in a vertical cavity surface emitting laser submitted to optical feedback

  • Frank Robert
  • Pascal Besnard
  • Marie-Laure CharéS
  • Guy Stephan
Article
  • 265 Downloads

Abstract

We study experimentally and theoretically two polarization effects in a vertical cavity surface emitting laser submitted to optical feedback. In a first experiment, we obtain flips between two linearly polarized laser modes up to a frequency of 50 MHz using an external cavity with a polarizer. In a second experiment, polarization self modulation is demonstrated up to a frequency of 2.6 GHz, using a quarter wave plate instead. Numerical calculations, based on a four levels model for the active medium, show a good agreement with the experiments.

Résumé

Dans cet article, L’étude expérimentale et théorique de deux effets de polarisation dans un laser à émission par la surface soumis à une contre-réaction optique est présentée. Une premiére expérience consiste en L ’intro-duction dans la cavité externe d’un polariseur; il est possible de faire commuter L’état de polarisation entre les modes de polarisation orthogonale par la modulation du courant d’injection du laser pour une fréquence de 50 MHz. Dans un second temps, une lame quart d’onde est insérée dans la cavité externe : ce dispositif permet de générer une automodulation des intensités selon les axespropres du laser jusqu’à une fréquence de 2,6 GHz. Une intégration numérique des équations dynamiques du laser, ou le milieu est décrit par un modéle à quatre niveaux, montre un bon accord avec les résultats expéri-mentaux.

Key words

Semiconductor laser Optical polarization Emitting surface device Feedback Selfmodulation Experimental study Theoretical study Polarizer Cavity 

Mots clés

Laser semiconducteur Polarisation optique Dispositif émission surface Rétroaction Automodulation Etude expérimentale Etude théorique Polariseur Cavite 

Contrôle de l’état de polarisation d’un laser à émission par la surface par l’application d’une contre-réaction optique

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen (Y. C), Liu (J. M.). Switching mechanism in polarization bistable semiconductor lasers.Optical and Quantum Electronics (1985),19, pp. 93–102.CrossRefGoogle Scholar
  2. [2]
    Klehr (A.), Muller (R.), Voss (M), Barwolff (A.). Gigahertz switching behavior of polarization-bistable InGaAsP/InP lasers under high current modulation.Applied Physics Letters (1994),64, n° 7, pp. 830–832.CrossRefGoogle Scholar
  3. [13]
    Sapia (A.), Spano (P.), Daino (B.). Polarization switching in semi- conductors lasers driven via injection from an external radiation.Applied Physics Letters (1987),50, pp. 57–59.CrossRefGoogle Scholar
  4. [4]
    Toda (T.), Ogasawara (N.), Ito (R.). Polarization control by optical in semiconductor lasers.Japanese Journal of Applied Physics (1988),27, n° 9, pp. 1702–1707.CrossRefGoogle Scholar
  5. [5]
    Loh (W. H.), Ozeki (Y), Tang (C. L.). High frequency po- larization self modulation and chaotic phenomena in external cavity semiconductor lasers.Journal of Applied Physics (1990),56, n° 26, pp. 2613–2615.Google Scholar
  6. [6]
    Badr (N.), White (I. H.), Tan (M. R. T), Houng (Y. M.), Wang (S. Y). Enhanced polarization self switching in a vertical cavity surface emitting laser by gain saturation of transverse mode.Electronics Utters (1994),30, pp. 1227–1229.CrossRefGoogle Scholar
  7. [7]
    Jiang (S.), Pan (Z.), Dagenais (M.), Morgan (R. A.), Kojima (K.). High-frequency polarization self modulation in vertical cavity surface emitting lasers.Applied Physics Letters (1993),63, n° 26, pp. 3545–3547.CrossRefGoogle Scholar
  8. [8]
    Epler (J. E.), Gehrsistz (S.), Gulden (K. H.), Moser (M.), Sigg (H.C), Lehmann (H. W.). Mode behaviour and high resolution spectra of circular symmetric GaAs/AlGaAs air post vertical cavity surface emitting lasers.Applied Physics Letters (1996),69, pp. 722–724.CrossRefGoogle Scholar
  9. [9]
    Paddon (P.), Sjerve (E.), May (A. D.), Bourouis (M.), Stephan (G. M.). Polarization modes in a quasi-isotropic laser : a general anisotropy model with applications.Journal of Optical Society of America B (1992),9, n° 4.Google Scholar
  10. [10]
    Besnard (P.), Xiaolin (J.), Dagliesh (R.), May (A. D.), Stephan (G. M.). Polarization switching in a microchip Nd:YAG laser using polarized feedback.Journal of Optical Society of America B (1993),10, n°9, pp. 1605–1609.CrossRefGoogle Scholar
  11. [11]
    Martin-Regalado (J.), Prati (F), San Miguel (M.), Abraham (N. B.). Polarization properties of vertical cavity surface emitting lasers.IEEE J. QE (1997).Google Scholar
  12. [12]
    Jewell (J. L.), Scherer (A.), McCall (S. L.), Lee (Y. H.), Walker (S. J.), Harbison (J. P.), Florez (L. T.). LOW threshold electrically-pumped vertical cavity surface emitting microlasers.Electronic Utters (1989),25, pp. 1123–1124.CrossRefGoogle Scholar
  13. [13]
    Robert (F.), Besnard (P.), Chares (M. L.), Stephan (G. M.). Switching of the polarization state of a vertical cavity surface- emitting laser using polarized feedback.Optical and Quantum Electronics (1995),7, pp. 805–811.CrossRefGoogle Scholar
  14. [14]
    Tkach (R. W.), Chraplyvy (A. R.). Regimes of feedback effects in ].5 µm distributed feedback lasers.J. Lightwave Technology (nov. 1986),14, pp. 1655–1661.CrossRefGoogle Scholar
  15. [15]
    Mukaira (T.), Ohnoki (N.), Hayashi (Y), Hatori (N.), Koyama (F.), Iga (K.). Excess intensity noise originated from polarization fluctuation in vertical surface emitting lasers.IEE Photonics Technology Utters (1995),7, n° 10, pp. 1113–1115.CrossRefGoogle Scholar
  16. [16]
    Petermann (K.). Laser diode modulation and noise.ADOP Kluwer Academic Publishers (1988), pp. 124.Google Scholar
  17. [17]
    Hasnain (G.), Tai (K.), Yang (Y. H.), FISCHER (R. J.), Wynn (J. D.), Weir (B.), Dutta (N. K.), Cho (A. Y). Performance of gain guided surface emitting lasers with semiconductor distributed Bragg reflectors.IEEE Journal of Quantum Electronics (1991),27, n° 6, pp. 1377–1385.CrossRefGoogle Scholar
  18. [18]
    Babic (D.), Chung (Y), Dagli (N.), Bowers (J.). Modal reflection of quarter wave mirrors in vertical cavity lasers. IEEE Journal of Quantum Electronics (1993),29, n° 6, pp. 1951–1962.CrossRefGoogle Scholar
  19. [19]
    Osmundsen (J. H.), Gade (N.). Influence of optical feedback on laser frequency and threshold conditions.IEEE J. Quantum Electronics (March 1983),19, pp. 465–469.CrossRefGoogle Scholar
  20. [20]
    Jones (R. C). A new calculus for the treatment of optical systems VII Properties of the N matrices.J. Opt. Soc. Am. (1948),38, pp. 671.CrossRefGoogle Scholar
  21. [21]
    Lang (R.), Kobayashi (K.). External optical feedback effects on semiconductor injection laser properties.IEEE Journal of Quantum Electronics (1980),16, pp. 347–355.CrossRefGoogle Scholar
  22. [22]
    Acket (G. A.), Leenstra (D.), Den Boef (A. J.), Verbeek (B.). The influence of feedback intensity on longitudinal mode properties and optical noise in index guided semiconductor lasers.IEEE Journal of Quantum Electronics (1984),20, n° 10, pp. 1163–1169.CrossRefGoogle Scholar
  23. [23]
    Van Tarjwijk (G. H. M.), Lenstra (D.). Semiconductor lasers with optical injection and feedback.Quantum Semiclassical Optics (1995),7, pp. 87–143.CrossRefGoogle Scholar
  24. [24]
    Robert (F), Besnard (P.), Chares (M. L.), Stephan (G. M.). Dynamique de polarisation autonome dans un VCSEL avec cavite externe.it Actes des Séminaires Actions Scientifique p. 47 Commu- nication France Telecom (Apr. 1996).Google Scholar
  25. [25]
    Brunel (M), Vallet (M.), Ropars (G.), Le Floch (A.), Bretenaker (F.), Joulieg Keromnes (J. C). Modal analysis of polarization self modulation lasers.Physical Review A (1997),55, n° 2, pp. 1391–1397.CrossRefGoogle Scholar
  26. [26]
    Loh (W.), Tang (C). Numerical investigation of ultrahigh fre- quency polarization self modulation in semiconductor lasers.IEEE Journal of Quantum Electronics (1991),27, n° 3, pp. 389- 395.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Frank Robert
    • 1
  • Pascal Besnard
    • 1
  • Marie-Laure CharéS
    • 1
  • Guy Stephan
    • 1
  1. 1.Laboratoire d’Optronique associé au Centre National de la Recherche Scientifique (UPRESA 6082) Université de Rennes ILannion Cedex

Personalised recommendations