Advertisement

Annales des Télécommunications

, Volume 36, Issue 1–2, pp 148–153 | Cite as

Ice depolarization at 11.7 and 19 GHZ on slant paths in Virginia, USA

  • C. W. Bostian
  • T. Pratt
  • A. Tsolakis
Session 5 Cross-Polarization on Terrestrial Links

Abstract

Measurements of attenuation and cross-polarization on slant paths from theCtsandComstarD2 satellites to Blacksburg, VA, have been in progress for three years. The data for 1977 and 1978 have been analyzed to determine the extent of severe ice depolarization on these paths, and a number of events have been identified. The behaviour of the observed cross-polarization at 11.7 and 19 GHz in two events has been compared with current theory for ice depolarization.

Key words

Wave propagation Centimetric wave Satellite communication Hydrometeor Depolarization 

Dépolarisation due a la Glace a 11,7 GHZ et 19 GHZ sur des Trajets Obliques Observée en Virginie, Etats-Unis

Analyse

Des mesures de l’affaiblissement et du découplage de polarisation sur des trajets obliques reliant les satellitesCtsetComstarD2 à Blacksburg en Virginie, ont été réalisées pendant trois ans. Les données obtenues en 1977 et 1978 ont été analysées pour déterminer l’importance de la dépolarisation due à la glace sur ces trajets et un certain nombre de phénomènes ont été identifiés. Le comportement de la transpolarisation due à la glace lors d’observations de la propagation à 11,7 et 19 GHz, a été comparé avec celui prévu généralement dans les modèles théoriques.

Mots clés

Propagation onde Onde centimétrique Télécommunication par satellite Hydrométéore Dépolarisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cox (D. C.),Arnold (H. W.),Hoffman (H. H.). Depolarization of 19 and 28 GHz earth-space signals by ice-particles.Radio Sci., USA (1978),13, n∘ 3, pp. 511–517.CrossRefGoogle Scholar
  2. [2]
    Arnold (H. W.),Cox (D. C.). Dependence of depolarization on incident polarization for 19 GHz satellite signals.Bell Syst. tech. J., USA (1978),57, n∘ 9, pp. 3267–3276.Google Scholar
  3. [3]
    Bostian (C. W.),Allnutt (J. E.). Ice-crystal depolarization on satellite-earth microwave radio paths.Proc. IEE, London (1979),126, n∘ 10, pp. 951–960.Google Scholar
  4. [4]
    Haworth (D. P.),Watson (P. A.),McEwan (N. J.). Model for the effect of electric field on satellite-earth microwave radio-propagation.Electron. Letters, GB (1977),13, n∘ 9, pp. 562–564.CrossRefGoogle Scholar
  5. [5]
    Twersky (V.). On scattering of wave by random distribution. Free space scatterer formalism.J. Math. Phys., USA (1962),3, pp. 700–715.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Hendry (A.),McCormick (G. E.). Radar observations of the alignement of precipitation particles by electrostatic fields in thunderstorm.J. Geophys. Res., USA (1976),81, pp. 5353–5357.CrossRefGoogle Scholar
  7. [7]
    Mason (B. J.).Cloud Physics (1972) pp. 265–267.Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1981

Authors and Affiliations

  • C. W. Bostian
    • 1
  • T. Pratt
    • 2
  • A. Tsolakis
    • 1
  1. 1.Department of Electrical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Electronic and Electrical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations