Norms of finite morphisms

  • K. Hoechsmann
  • Stephen S. Shatz


Hopf Algebra Galois Group Galois Theory Canonical Morphism Symmetric Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Bourbaki, “Algebre”, Hermann, Paris (1958).Google Scholar
  2. [2]
    S. U. Chase, “Inseparable Galois Theory and a Theorem of Jacobson”, to appear.Google Scholar
  3. [3]
    P. Gabriel, “Construction de Preschemas Quotient” in SGAD, Éxpose V, 1963–64.Google Scholar
  4. [4]
    A. Grothendieck, “Techniques de Construction et Théorémes d'Existence en Géométrie Algébrique, IV: Les Schemas de Hilbert”, Sem. Bourb., Éxposé221, 1960–61.Google Scholar
  5. [5]
    S. Shatz, “Galois Theory”, Proc. Conf. on Category Theory, Homology Theory, and their Application, I, Springer-Verlag Lecture Notes, Vol.86 (1968), pp. 146–158.CrossRefGoogle Scholar
  6. [6]
    M. E. Sweedler, “The Hopf Algebra of an Algebra as applied to Field Theory”, J. of Alg., Vol.8 (1968), pp. 262–276.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    L. Begueri, “Schema d'Automorphismes. Application à l'Étude d'Extensions Finies Radicielles”, Bull. Soc. Math. France,93 (1969), pp. 89–111.MathSciNetMATHGoogle Scholar

Copyright information

© Mathematische Seminar 1972

Authors and Affiliations

  • K. Hoechsmann
  • Stephen S. Shatz

There are no affiliations available

Personalised recommendations