Annales Des Télécommunications

, Volume 52, Issue 3–4, pp 164–173 | Cite as

CAD techniques for the electromagnetic design of monolithic millimetre-wave integrated circuits

  • David Sánchez-hernández
  • Ulun Karacaoglu
  • Tacar Gokdemir
  • Ata H. Khalid
  • Ali A. Rezazadeh
  • Miguel Ferrando
  • Elias de los Reyes
  • Ian D. Robertson
Article

Abstract

It is well known that mm-waves have an important role to play in the rapid expansion of mobile and personal communications, mmic technology is an important factor since it can provide a means of mass producing the user terminal rf subsystems. Millimetre-wave integrated circuits do not yet however offer the high packing density and functionality which is now possible for lower frequency applications where lumped elements are used. This problem is influenced most of all by the extreme modelling difficulties encountered at frequencies above 30 GHz. This paper reviews the current state-of-the-art for cad techniques used in mmic design. It describes some limitations of the standard Smarttm library approach and looks at the application of commercial electromagnetic simulators in the design of both microstrip and cpw circuits.

Key words

Circuit design Computer aided design Microwave integrated circuit Monolithic integrated circuit Millimetric wave Electrical simulation Modeling Circuit library Microstrip line Amplifier Annular resonator Transceiver 

Techniques cao pour la conception Électromagnétique de circuits intégrés monolithiques en ondes millimétriques

Résumé

Les ondes millimétriques ont un rôle clef dans les communications mobiles. La technologie mmic fournit un moyen de fabriquer à grande échelle des composants pour les terminaux d’usager. Mais les circuits intégrés fonctionnant aux ondes millimétriques ne présentent pas encore la miniaturisation et les fonctions qui sont maintenant possibles à des fréquences inférieures en utilisant des éléments de circuits localisés. Ce probléme est en majeure partie dû aux difficultés de la modélisation aux fréquences supérieures à 30 GHz. L’article donne un aperçu de I’état de I’art des techniques cao utilisées pour la technologie mmic. // décrit ensuite quelques limitations de l’approche classique par bibliothèque Smarttm et étudie I’application de simulateurs électromagnétiques commerciaux à la conception de circuits en technologie microruban ou coplanaire (cpw).

Mots clés

Conception circuit Conception assistée Circuit intégré hyperfréquence Circuit intégré monolithique Onde millimétrique Simulation électrique Modélisation Bibliothèque circuit Ligne miroruban Amplificateur Résonateur anneau Emetteur récepteur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Robertson (I. D.), Karacaoglu (U.), Sánchez-Hernández (D.). cad techniques for microwave circuits.IEEE Electronics & Communications Engineering Journal (1996),8, no 6, pp. 245–256.CrossRefGoogle Scholar
  2. [2]
    Pettenpaul (E.)et al. cad models of lumped elements on GaAs up to 18 GHz.IEEE Trans. MTT (1988),36, no 2, pp. 294–304.CrossRefGoogle Scholar
  3. [3]
    Jansen (R. H.), Sauer (J.). High speed 3-D electromagnetic simulation for application in mic/mmic cad using the spectral operator expansion (soe) techniques.IEEE Trans. MTT (1991),39.Google Scholar
  4. [4]
    Sánchez-Hernández (D.), Sinclair (C), Robertson (I. D.). Electromagnetic simulation.IEE Colloquium on MMICs, London (Nov. 1994), pp. 5/1–5/7.Google Scholar
  5. [5]
    Cardullo (M.)et al. Transmitter chips for use in a dual-mode amps/cdma chip set.Microwave Journal (March 1996),39, no 3, pp.60–72.Google Scholar
  6. [6]
    Rautio (J. C), Harrington (R. R). An electromagnetic time harmonic analysis of shielded microstrip circuits.IEEE Trans. MTT (1987),35, pp. 726–729.CrossRefGoogle Scholar
  7. [7]
    ***. Compact Soft, em simulator adds comprehensive antenna analysis.Microwaves & RF (Nov. 1994), pp. 126.Google Scholar
  8. [8]
    Rautio (J. C). Some comments on electromagnetic dimensionality.IEEE Microwave Theory & Tech. Soc. Newsletter (Winter 1992), pp. 23.Google Scholar
  9. [9]
    Cendes (Z.)et al. Em field solver offers 3D analysis of mmics and antennas.Microwaves & RF (Apr. 1996).Google Scholar
  10. [10]
    Bandler (J. W.)et al. Electromagnetic optimization exploiting aggresive space mapping.IEEE Trans. MTT (1995),43, no 12, pp. 2874–2882.CrossRefGoogle Scholar
  11. [11]
    Swanson (D.) et al. Connecting mmic chips to ground in a microstrip environment. Microwave Journal (Dec. 1993), pp. 58–64.Google Scholar
  12. [12]
    Maloney (J. G.)et al. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method.IEEE Trans. AP (1990),38, no 7, pp. 1059–1068.Google Scholar
  13. [13]
    Allen (R.)et al. Numerical results for the symmetrical condensed tlm node.IEEE Trans. MTT (1987),35, no 4, pp. 378–382.CrossRefGoogle Scholar
  14. [14]
    Wang (Q. H.), Gokdemir (T.), Budimir (D.), Karacaoglu (U.), Rezazadeh (A. A.), Robertson (I. D.). Fabrication and microwave characterisation of multilayer circuits for mmic applications.IEE Proceedings, part H (July 1996).Google Scholar
  15. [15]
    Gokdemir (T.), Robertson (I. D.). K/Ka-band coplanar waveguide directional couplers using a three-metal-level mmic process.IEEE Microwave and Guided-Wave Letters (1996),6, no 2, pp. 76–78.CrossRefGoogle Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1997

Authors and Affiliations

  • David Sánchez-hernández
    • 2
  • Ulun Karacaoglu
    • 1
  • Tacar Gokdemir
    • 1
  • Ata H. Khalid
    • 1
  • Ali A. Rezazadeh
    • 1
  • Miguel Ferrando
    • 2
  • Elias de los Reyes
    • 2
  • Ian D. Robertson
    • 1
  1. 1.Department of Electronic and Electrical EngineeringKing’s CollegeStrand, LondonUK
  2. 2.Departamento de ComunicacionesUniversidad Politécnica de ValenciaValenciaEspagne

Personalised recommendations