Annales Des Télécommunications

, Volume 52, Issue 3–4, pp 155–163 | Cite as

EMC-oriented full-wave modelling of passive MMIC structures for wireless applications

  • Paolo Bernardi
  • Renato Cicchetti
  • Antonio Faraone


A class of full-wave models useful to tackle emc problems in passive mmic structures, as well as in conventional electronic circuitry, employed in wireless technology applications is presented. Upon using the appropriate dyadic Green’s function, the prediction of undesired emi effects, a widely addressed problem in high package-density modules, is performed by accounting for both electromagnetic coupling and surface/volume wave excitation. Particular efforts have been devoted to the simulation of circuits in realistic exciting/loading situations through the derivation of equivalent network representations. The resulting full-wave models allow an accurate prediction of possible emc problems in mmics already during the design stage, thus paving the way to low-cost solutions for emi reduction.

Key words

Modelling Microwave integrated circuit Monolithic integrated circuit Electromagnetic compatibility Planar technology Electromagnetic coupling Green function Microstrip line Discontinuity Printed circuit Conducting plane Frequency domain method Telecommunication application Radiocommunication 

MODÉLisation en onde entiÈre AdaptÉe À L’etude de la compatibilitÉ electromagnÉtique de structures passives À circuits intÉgrÉs hyperfrÉquences destinÉes Àa des RÉseaux sans fil


Une classe de modèles dynamique apte à traiter des problèmes de compatibilité électromagnétique dans les structures passives, dans les circuits intégrés hyperfrequences, mais également dans les circuits électroniques classiques, utilisés en télécommunication sansfil est présentée. Grâce à l’utilisation de la fonction de Green dyadique appropriée, il est possible de déterminer les effets indésirables des perturbations électromagnetiques, qui constituent un problème dans les modules à haute densité d’intégration, en tenant compte à la fois des couplages électromagnétiques et des excitations par ondes de surfaces et de volume. Des efforts particuliers ont été consacrés à la simulation de circuits dans les situations réalistes d’excitation et de charges avec établissement de réseaux électriques équivalents. Les modèles obtenus permettent de simuler avec précision les éventuels problèmes de cem dans les circuits intégrés hyperfréquences, et ceci dès la phase de conception, ouvrant ainsi la voie à des solutions à bas coût pour la réduction des effets des perturbations électromagnetiques.

Mots clés

Modélisation Circuit hyperfréquence Circuit intégré monolithique Compatibilité électromagnétique Technologie planaire Couplage électromagnétique Fonction Green Ligne microruban Discontinuite Circuit imprime Plan conducteur Méthode domaine fréquence Application télécommunication Radiocommunication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ***. Numerical techniques for microwave and millimeter-wave passive structures. Edited by Itoh (T.).John Wiley & Sons, New York (1989).Google Scholar
  2. [2]
    Hirano (M.), Nlshlkawa (K.), Toyada (I.), AOYAMA (S.), Sugitani (S.), Yamasaki (K.). Three-dimensional passive circuit technology for ultra-compact mmic’s.IEEE Trans. MTT (Dec. 1995),43, no 12, pp. 2845–2850.CrossRefGoogle Scholar
  3. [3]
    Lakin (K. M.), Kline (G. R.), McCarron (K. T.). Development of miniature filters for wireless applications.IEEE Trans. MTT (Dec. 1995),43, no 12, pp. 2933–2939.CrossRefGoogle Scholar
  4. [4]
    Nair (V.), Tehrani (S.), Vaitkus (R. L.), Scheitlin (D. G.). Low power hfet down converter mmic’s for wireless communication applications.IEEE Trans. MTT(Dec. 1995),43, no; 12, pp. 3043–3047.CrossRefGoogle Scholar
  5. [5]
    Nakano (H.), Kerner (S. R.), Alexopoulos (N. G.). The moment method solution for wire antennas of arbitrary configuration.IEEE Trans. AP (Dec. 1988),36, no 12, pp. 1667–1674.Google Scholar
  6. [6]
    Michalski (K. A.), Zheng (D.). Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: theory.IEEE Trans. AP (Mar. 1990),38, no; 3, pp. 335–344.Google Scholar
  7. [7]
    Wu (S. C), Alexopoulos (N. G.). Broadband microstrip antennas on electrically thick substrates.J. Electromag. Waves Applicat. (1993),7, no; 1, pp. 123–146.CrossRefGoogle Scholar
  8. [8]
    Wang (T.), An (H.), Wu (K.), Laurin (J.), Bosisio (R.). Spectraldomain analysis of radiating cylindrical dielectric resonators for wireless applications.IEEE Trans. MTT (Dec. 1995),43, no 12, pp. 2959–2964.CrossRefGoogle Scholar
  9. [9]
    Balzano (Q.), Bernardi (P.), Cicchetti (R.), Faraone (A.). Planar antennas for portable telephones : performance and interaction characteristics.Invited paper at XXV URSI General Assembly, Lille, France (Aug. 28–Sept. 5, 1996).Google Scholar
  10. [10]
    Ott (H. W.). Noise reduction techniques in electronic systems.John Wiley Interscience, New York (1986).Google Scholar
  11. [11]
    Paul (C. R.). Modeling electromagnetic interference properties of printed circuit boards.IBM J. of Research and Development (Jan. 1989),33, no 1, pp. 33–50.CrossRefGoogle Scholar
  12. [12]
    Smith (T. S.), Paul (C. R.). Effect of grid spacing on the inductance of ground grids.Proc. IEEE Int. Symp. Electromag. Compat. (1991), pp. 72–77.Google Scholar
  13. [13]
    Paul (C. R.). Introduction to electromagnetic compatibility.John Wiley, New York (1992).Google Scholar
  14. [14]
    Rubin (B. J.), Bertoni (H. L.). Waves guided by conductive strips above a periodically perforated ground plane.IEEE Trans. MTT (July 1983),31, no 7, pp. 541–549.CrossRefGoogle Scholar
  15. [15]
    Rubin (B. J.). The propagation characteristics of signal lines in a mesh-plane environment.IEEE Trans. MTT (May 1984),32, no; 5, pp. 522–531.CrossRefGoogle Scholar
  16. [16]
    Chan (C. H.), Mittra (R.). The propagation characteristics of signal lines embedded in a multilayered structure in the presence of a periodically perforated ground plane.IEEE Trans. MTT (June 1988),36, no 6, pp. 968–975.CrossRefGoogle Scholar
  17. [17]
    Pan (G.), Zhu (X.), Gilbert (B. K.). Analysis of transmission lines of finite thickness above a periodically perforated ground plane at oblique orientation.IEEE Trans. MTT (Feb. 1995),43, no 2, pp. 383–393.CrossRefGoogle Scholar
  18. [18]
    Bernardi (P.), Cicchetti (R.), Faraone (A.). A full-wave characterization of an interconnecting line printed on a dielectric slab backed by a gridded ground plane.IEEE Trans. EMC (Aug. 1996),38, no; 3, pp. 237–243.Google Scholar
  19. [19]
    Raut (R.), Steenaart (W.), Costache (G. I.). A note on the optimum layout of electronic circuits to minimize the radiated electromagnetic field strength.IEEE Trans. EMC (Feb. 1988),30, no; 1, pp. 88–89.Google Scholar
  20. [20]
    Kiang (J. F.). On the resonances and shielding of printed traces on a circuit board.IEEE Trans. EMC (Nov. 1990),32, no 4, pp. 269–276.Google Scholar
  21. [21]
    Bernardi (P.), Cicchetti (R.). Dyadic Green’s functions for conductor-backed layered structures excited by arbitrary tridimensional sources.IEEE Trans. MTT (Aug. 1994),42, no 8, pp. 1474–1483.CrossRefGoogle Scholar
  22. [22]
    Barkeshli (S.), Pathak (P. H.). On the dyadic Green’s function for a planar multilayered dielectric/magnetic media.IEEE Trans. MTT (Jan. 1992),40, no 1, pp. 128–142.CrossRefGoogle Scholar
  23. [23]
    Pan (S.), Wolff (I.). Scalarization of dyadic spectral Green’s functions and network formalism for three-dimensional full-wave analysis of planar lines and antennas.IEEE Trans. MTT (Nov. 1994),42, no 11, pp. 2118–2127.CrossRefGoogle Scholar
  24. [24]
    Bernardi (P.), Cicchetti (R.), Moreolo (D. S.). A full-wave model for EMI prediction in planar microstrip circuits excited in the near-field of a short electric dipole.IEEE Trans. EMC (May 1995),37, no 2, pp. 175–182.Google Scholar
  25. [25]
    Warne (L. K.), Chen (K. C.) Relation between equivalent antenna radius and transverse line dipole moments of a narrow slot aperture having depth.IEEE Trans. EMC (Aug. 1988),30, no 3, pp. 364–370.Google Scholar
  26. [26]
    Chen (Y. G.), Crumley (R.), Lloyd (S.), Baum (C. E.). Fieldcontaininginductors.IEEE Trans. EMC (Aug. 1988),30, no 3, pp. 345–351.Google Scholar
  27. [27]
    Okoshi (T.). Planar circuits for microwave and lightwaves. Series in electrophysics, vol. 18,Springer, Berlin (1985).Google Scholar
  28. [28.
    ] Gupta (K. C), Abouzahra (M. D.). Analysis and design of planar microwave components.IEEE Press (1994).Google Scholar
  29. [29]
    Katehi (P. B.), Alexopoulos (N. G.). Frequency-dependent characteristics of microstrip discontinuities in millimeter-wave integrated circuits.IEEE Trans. MTT (Oct. 1985),33, no 10, pp. 1029–1035.CrossRefGoogle Scholar
  30. [30]
    Jackson (R. W.), Pozar (D. M.) Full-wave analysis of microstrip open-end and gap discontinuities.IEEE Trans. MTT (Oct. 1985),33, no 10, pp. 1036–1042.CrossRefGoogle Scholar
  31. [31]
    Pozar (D. M.), Voda (S.M.). A rigorous analysis of a microstripline fed patch antenna.IEEE Trans. AP (Dec. 1987),35, no 12, pp. 1343–1350.Google Scholar
  32. [32]
    Gothelf (U. V.), østergaard (A.). Full-wave analysis of a twoslot microstrip filter using a new algorithm for computation of the spectral integrals.IEEE Trans. MTT (Jan. 1993),41, no 1, pp. 101–108.CrossRefGoogle Scholar
  33. [33]
    Alexopoulos (N. G.), Yang (H. Y). Basic blocks for highfrequency interconnects: theory and experiment.IEEE Trans. MTT (Aug. 1988),36, no 8, pp. 1258–1264.CrossRefGoogle Scholar
  34. [34]
    Alexopoulos (N. G.), Jackson (D. R.), Yang (H. Y). Microstrip open-end and gap discontinuities in a substrate-superstrate structure.IEEE Trans. MTT (Oct. 1989),37, no 10, pp. 1542–1546.CrossRefGoogle Scholar
  35. [35]
    Alexopoulos (N. G.), Wolff (I.), Wu (S. C), Yang (H. Y). A rigorous dispersive characterization of microstrip cross and T junctions.IEEE Trans. MTT (Dec. 1990),38, no 12, pp. 1837–1844.CrossRefGoogle Scholar
  36. [36]
    Cicchetti (R.), Faraone (A.). An expansion function suited for fast full-wave spectral-domain analysis of microstrip discontinuities.Int. J. MIM1CAE (July 1994),4, no 3, pp. 297–306.Google Scholar
  37. [37]
    Cicchetti (R.), Faraone (A.). A full-wave spectral domain analysis of an asymmetric gap microstrip discontinuity.Microwave Opt. Tech. Letters (Aug. 1995),9, no 6, pp. 356–358.CrossRefGoogle Scholar
  38. [38]
    Harokopus (W. P.), Kathei (P. B.). Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses.IEEE Trans. MTT (Dec. 1989),37, no 12, pp. 2058–2066.CrossRefGoogle Scholar
  39. [39]
    Mosig (J. R.). Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation.IEEE Trans. MTT (Feb. 1988),36, no 2, pp. 314–323.CrossRefGoogle Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1997

Authors and Affiliations

  1. 1.Department of Electronic EngineeringUniversity of Rome La SapienzaRomeItalie

Personalised recommendations