Advertisement

Homogene affine ebenen

  • Helmut Salzmann
Article

Literatur

  1. [1]
    R. Baer, The fundamental theorems of elementary geometry. Trans. Amer. Math. Soc.56 (1944), 94–129.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. G. HigmanJ. E. McLaughlin, Geometric ABA-groups. Illinois J. Math.5 (1961), 382–397.MATHMathSciNetGoogle Scholar
  3. [3]
    D. R. HughesF. C. Piper, Projective Planes. New York: Springer 1973.MATHGoogle Scholar
  4. [4]
    T. Karube, The local structure of an orbit of a transformation group. Proc. Japan Acad.37 (1961), 212–214.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc.1 (1950), 467–469.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. MontgomeryL. Zippin, Topological Transformation Groups. New York: Interscience 1955.MATHGoogle Scholar
  7. [7]
    J. Poncet, Groupes de Lie compacts de transformations de l’espace euclidien et les sphères comme espaces homogènes. Comment. Math. Helv.33 (1959), 109–120.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    L. S. Pontrjagin, Topologische Gruppen. Leipzig: Teubner 1958.MATHGoogle Scholar
  9. [9]
    H. Salzmann, Topological Planes. Advances in Math.2 (1967), 1–60.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    H. Salzmann, Homogene 4-dimensionale affine Ebenen. Math. Ann.196 (1972), 320–322.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Salzmann, Homogene kompakte projektive Ebenen. Pacific J. Math.Google Scholar
  12. [12]
    H. Salzmann, Compact Planes of Lenz Type III. Geom. Dedic.Google Scholar
  13. [13]
    L. A. Skornjakov, Topological projective planes. Trudy Moskov. Mat. Obšč.3 (1954), 347–373.Google Scholar
  14. [14]
    P. A. Smith, Fixed point theorems for periodic transformations. Amer. J. Math.63 (1941), 1–8.CrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Strambach, Eine Charakterisierung der klassischen Geometrien. Arch. Math.18 (1967), 539–544.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    K. Strambach, Vierdimensionale affine Ebenen. Arch. Math.23 (1972), 342–345.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Szenthe, On the topological characterization of transitive Lie group actions. Acta Scient. Math. Szeged36 (1974), 323–344.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1975

Authors and Affiliations

  • Helmut Salzmann

There are no affiliations available

Personalised recommendations