Advertisement

Annales Des Télécommunications

, Volume 56, Issue 7–8, pp 384–393 | Cite as

Design of cyclic shift interleavers for Turbo Codes

  • Jinhong Yuan
  • Branka Vucetic
  • Wen Feng
  • Mark Tan
Article

Abstract

In this paper we consider cyclic shift interleavers for turbo coding. The properties of cyclic shift interleavers are discussed and compared with S-random interleavers. It is shown that the cyclic shift interleavers are equivalent or better than the S-random interleavers in the ability to break low weight input patterns. We estimated the performance of turbo codes with cyclic shift interleavers and compared it with the performance of S-random interleavers for varions interleaver sizes. The simulation results show that a turbo code with a cyclic shift interleaver can achieve a better performance than an S-random interleaver if the parameters of the cyclic shift interleaver are chosen properly. In addition, the cyclic interleavers have the advantages of lower design complexity and memory requirements.

Key words

Error correcting code Turbo codes Interleaving 

Structure D’entrelacementsÀ DÉcalage Cyclique pour les Turbocodes

Résumé

Dans cet article, on étudie les entrelacements à décalage cyclique pour le turbo-codage. Les propriétés de ces entrelacements sont décrites et comparées à celles des entrelacements de type S-random. Il est montré que les entrelacements à décalage cycliques sont équivalents voire meilleurs que les entrelacements S-random dans leur capacité à casser les mots d’entrée de poids faible. On a estimé les performance des turbocodes avec les entrelacements à décalage cyclique et on les a comparé avec les résultats des entrelacements S-random pour différentes tailles d’entrelacement. Les simulations montrent qu’un turbocode avec un entrelacement à décalage cyclique donne de meilleurs résultats à condition que les paramètres de cet entrelacement soient judicieusement choisis. Les entrelacements cycliques ont déplus, l’avantage d’une intégration peu complexe, et demandent peu de mémoire.

Mots dés

Code correcteur erreur Turbocode Entrelacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berrou (C.) andGlavieux (A.), “Near optimum error correcting coding and decoding: Turbo-codes,”Ieee Trans. Commun., vol. 44, n° 10, Oct. 1996, pp. 1261–1271.CrossRefGoogle Scholar
  2. [2]
    Benedetto (S.) andMontorsi (G.), “Unveiling turbo-codes: Some results on parallel concatenated coding schemes,”Ieee Trans. Inform. Theory, vol. 42, n°2, Max. 1996, pp. 409–428.MATHCrossRefGoogle Scholar
  3. [3]
    Divsalax (D.) andF. Pollara (F.), “Turbo codes for PCS applications”; inProc. ICC’95, Seattle, WA, June 1995, pp. 54–59.Google Scholar
  4. [4]
    Barbulescu (A.S.) andPietrobon (S.S.), “Terminating the Trellis of Turbo Codes in the Same State,”Electronics Letters, vol. 31, pp. 22–23, 1995.CrossRefGoogle Scholar
  5. [5]
    Richer (I.), “A Sample Interleaver for Use with Viterbi Decoding”,ieee Trans. Commun., COM-26, pp. 406–408, March 1978.Google Scholar
  6. [6]
    Yuan (J.), Vucetic (B.) andFeng (W.), “Combined turbo codes and interleaver design”,Ieee Trans. Commun., vol. 47, n° 4, Apr. 1999, pp. 484–487.CrossRefGoogle Scholar
  7. [7]
    Vucetic (B.) andYuan (J.), “Turbo codes: principles and applications”, Kluwer Academic Publishers, 2000.Google Scholar
  8. [8]
    Feng (W.), Yuan (J.) andVucetic (B.), “A code matched interleaver design for turbo codes”, submitted toIeee Trans. Commun. Google Scholar
  9. [9]
    Ramsey (J.L.), “Realization of optimum interleavers”,Ieee Trans. Inform. Theory, vol. 16, n°3, May 1970, pp. 338–345.MATHCrossRefGoogle Scholar
  10. [10]
    Forney (G.D.), Jr., “Burst-correcting codes for the classic bursty channel”,Ieee Trans. Commun., vol. 19, n°5, Oct. 1971, pp. 772–781.CrossRefGoogle Scholar
  11. [11]
    Hall (E.K.) andWilson (S.G.), “Convolutional interleavers for stream-oriented parallel concatenated convolutional codes”, inProc. 1998IEEE Int. Symposium on Inform. Theory, MIT, Cambridge, MA USA, Aug. 1998, p. 33.Google Scholar
  12. [12]
    Hokfelt (J.), Edfors (O.) and T. Msseng (T.), “A turbo code interleaver design criterion based on the performance of iterative decoding”,IEEE Communications Letters, vol. 5, n°2, Feb. 2001.Google Scholar
  13. [13]
    Takeshita (O.Y.) andCostello (D.J), Jr, “New Classes of Alge-braie Interleavers for Turbo Codes”,Proc. ISIT98, MA, USA, Aug. 1998, pp. 419.Google Scholar
  14. [14]
    Le Dantec (C.) andPiret (P.), “Algebraie and combinatorial methods producing good interleavers”,Proc. 2nd Inter. Symp. on Turbo Codes & Related Topics, Brest, France, Sep. 2000, pp. 271–274.Google Scholar
  15. [15]
    Crozier (S.), Guinand (P.), Lodge (J.) andHunt (A.), “Construction and Performance of New Tail-Biting Turbo Codes”, 6th International Workshop on Digital Signal Processing Techniques for Space Applications (DSP’98), Estec, Noordwijk, The Netherlands, Sept. 1998, paper 1.3.Google Scholar
  16. [16]
    Anderson (J.D.), “interleaver design for turbo coding”,Proc. Inter. Symp. on Turbo Codes and Related Topics, Brest, France, Sep. 1997, pp. 154–157.Google Scholar
  17. [17]
    Daneshgarah (F.) andMondin (M.), “Design of interleaver for turbo codes based on a cost function”,Proc. Inter. Symp. onTurbo Codes and Related Topics, Brest, France, Sep. 1997, pp. 255–258.Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesNSWAustralia
  2. 2.School of Electrical and Information EngineeringThe University of SydneyNSWAustralia

Personalised recommendations