Skip to main content
Log in

Ingénierie des systèmes de commutation optique et des réseaux locaux à large bande sur fibres optiques : analyses et perspectives

Engineering of photonetics switching systems and optical fiber metropolitan area networks : analysis and perspectives

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

Après un rappel sur l’évolution de la fonction commutation dansle rnis, qui met l’accent sur la mutation du commutateur temporel classique, l’article présente une analyse prospective et une évaluation des techniques et technologies utilisables en commutation optique et dans les réseaux à large bande : systèmes de commutation optiques spatiaux (architectures, technologies à base de diélectriques, de semiconducteurs, de matériaux photoréfractifs) et temporels (mémoires optiques à base de lignes à retard et de composants bistables, multiplexage); réseaux à accès multiple (amrt, accès multiple en code); commutation utilisant le spectre étalé (commutation de bits) ; commutation en longueur d’onde (multiplexeurs-démultiplexeurs, lasers et filtres accordables); commutation de paquets dans les réseaux multilongueurs d’onde (normalisation des réseaux à large bande, réseaux locaux en bus, étoile passive et multiétoile, commutation cohérente).

Résumé

Après un rappel sur l’évolution de la fonction commutation dans le rnis, qui met l’accent sur la mutation du commutateur temporel classique, l’article présente une analyse prospective et une évaluation des techniques et technologies utilisables en commutation optique et dans les réseaux à large bande : systèmes de commutation optiques spatiaux (architectures, technologies à base de diélectriques, de semiconducteurs, de matériaux photoréfractifs) et temporels (mémoires optiques à base de lignes à retard et de composants bistables, multiplexage); réseaux à accès multiple (amrt, accès multiple en code); commutation utilisant le spectre étalé (commutation de bits) ; commutation en longueur d’onde (multiplexeurs-démultiplexeurs, lasers et filtres accordables); commutation de paquets dans les réseaux multilongueurs d’onde (normalisation des réseaux à large bande, réseaux locaux en bus, étoile passive et multiétoile, commutation cohérente).

Abstract

This paper first reviews how switching evolves in the ISDN environment with emphasize placed on changes in conventionnal time-division switches, then assesses techniques and technologies usable in optical switching and broadband networks : optical space-division switching systems (architecture, technologies based on dielectrics, semiconductors, photorepactive material) and optical time-division switching (optical memories based on delay lines and on bistable components multiplexing); multiple access networks (tdma, multiple access by code) ; switching using spread spectrum (bit switching); wavelength switching (multiplexer-demultiplexer, tunable laser and filters) ; packet switching in multi-wavelength networks (broadband networks standardization, local area networks with bus, passive star or multi-star configuration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliographie

  1. Pennanech, Hauri (J.). Le commutateur, pièce maîtresse du RNIS.Commutation/Transmission (1987), n° 3.

  2. Jezequel (M.). Les perspectives d’évolution du rnis. Commutation/Transmission.

  3. ***.Commutation/Transmission (1987), n° 4.

  4. Santos (J. M.). Boc 800 service: offering the customer more choices.Bell Commun. Res. Exchange (jan. 1986),2, pp. 18–22.

    Google Scholar 

  5. Hass (R. J.). Introducing the intelligent network.Bell Commun. Res. Exchange (juil. 1986),2, pp. 2–7.

    Google Scholar 

  6. Easton (R. L.). TASi-E communications systems.IEEE Trans. COM (avr. 1982),30, pp. 803–807.

    Article  Google Scholar 

  7. Haselton (E. F.). apcm frame switching concept leading to burst switching network architecture.ICC’83 Conf. Rec. (juin 1983),3, pp. 1401–1406.

    Google Scholar 

  8. Amstutz (S. R.). Burst switching network architecture. An introduction.IEEE Commun. Mag. (nov. 1983),21, pp. 36–42.

    Article  Google Scholar 

  9. Montgomery (W. A.). Techniques for packet voice synchronisation.IEEE J. Selected Areas Commun, (dec. 1983),SAC-1, pp. 1022–1028.

    Article  Google Scholar 

  10. Kulzer (J. J.). Statistical switching architectures of future services.Proc. ISS’84, session 43 A (1984), pp. 1–6.

  11. Turner (J. S.). A packet network architecture for integrated services.Proc. GLOBECOM’83, session 2.1 (1983), pp. 1–6.

  12. Hoberecht (W. L.). Layered network protocols for packet voice and data integration. Proc. GLOBECOM’83, session 2.3 (1983), pp. 1–6.

  13. Clos. A study of non blocking switching networks.Bell Syst. tech. J. (mars 1953), pp. 407–424.

  14. Benes. Mathematical theory of connecting network and telephone traffic.Academic Press, New York (1965).

    Google Scholar 

  15. Coudreuse (J. P.). Prelude ou la naissance d’une technique de transfert de l’information.Echo des Recherches n° 126-4B (1986).

  16. Goke. Banyan networks for partitioning multiprocessing systems.Proc. of First Annual Computer Architecture Conference (déc. 1973), pp. 21–28.

  17. Hinton. A non blocking optical interconnection network using directional couplers.GLOBECOM (1984), pp. 26.5.1–26.5.5.

  18. Hinton. Photonic switching using directional couplers.IEEE Commun. Mag. (1987),25, n° 5.

  19. Spanke, Benes. N-stage planar optical permutation network.Applied Optic, (avr. 1987),26.

  20. Spanke. Architectures for large nonblocking optical space switches.IEEE J. of Quantum Electr. (1986),22, pp. 964–968.

    Article  Google Scholar 

  21. Joel. On permutation switching networks.Bell Syst. tech. J. (mai-juin 1968), pp. 813–822.

  22. Hill. On sided rearrangeable optical switching networks. J. Lightwave Techn. (19.86),4, n° 7.

  23. Warshan. A permutation networks.J. Assoc. Computing Machining (1968),15, pp. 159–163.

    Google Scholar 

  24. Gaylord. A two stages rearrangeable broadcast switching network.IEEE Trans. COM (1983),33, n° 10, pp. 1025–1035.

    Google Scholar 

  25. Kondo. 32 switch elements integrated low crosstalk LiNbO3 4 × 4 optical matrix switch.IOOC-ECOC85, Venise (1985), pp. 361–364.

  26. Spanke. Architecture for guided wave optical space switching systems.Meeting on Optical Switching (1987), pp. 42–48.

  27. Feng. A survy of interconnection using directionnal couplers.IEEE Computers (déc. 1981),14, pp. 12–27.

    Google Scholar 

  28. Wu. On a class of multistage interconnection networks.IEEE Trans. Computers (1980),29, pp. 694–702.

    Article  MATH  Google Scholar 

  29. Sawchuk (A.). Dynamic optical interconnections for parallel processors.SPIE, Los Angeles (jan. 1986),625.

  30. Shimoe. A path indépendant insertion loss optic space switching network.ISS’87, pp. 1–27.

  31. Krishnan. Dilated networks for photonic switching.IEEE Trans. COM (1987),35, n° 12, pp. 1357–1365.

    Article  MathSciNet  Google Scholar 

  32. Hinton. Photonic switching using directional couplers.IEEE Commun. Mag. (1987),25, n° 5, pp. 16–25.

    Article  MathSciNet  Google Scholar 

  33. Watson (J. E.). Polarisation independent 1 × 16 optical switch using Ti : LiNbO3 waveguides.Conf. on Optical Fiber Commun., San Diego, CA (fév. 1985), p. 110.

  34. Ctyroky. Voltage length product of X and Z. Cut Ti: LiNbO3 directional coupler and boa switches : a comparison.J. Opt. Commun. (1984),7, pp. 139–143.

    Google Scholar 

  35. Neyer (A.). Single mode electrooptic X switch for integrated optic switching networks.IEE Second European Conference on Integrated Optics (oct. 1983),227, pp. 136–139.

    Google Scholar 

  36. Bogert (G. A.). 4 × 4 Ti : LiNbO3 switch array with full broadcast capability meeting optical switching.ThD3.1 (1987), pp. 68–70.

  37. Korotky (K.). 14 Gbit/s optical signal encoding for = 1.32 µra with double pulse drive of Ti: LiNbO3 waveguide modulator.Electr. Lett. (1984),20, pp. 132–133.

    Article  Google Scholar 

  38. Tsai. Optical channel waveguide switch and coupler using total internal reflection.IEEE J. Quantum Elect. (1978),14, n° 7, pp. 513–517.

    Article  Google Scholar 

  39. Gravey (P.). Principe of broadband and high capacity optical switching system using reversible holographic grating P. 16.7th ECOC 81, University Press Copenhagen (1981).

  40. Herriau. Dynamic beam deflection using photorefractive gratings in bso cristals.J. Opt. Soc. Am. B (févr. 1986), 3, n° 2.

  41. Huignard (J. P.). Wave-mixing in non linear photorefractive materials. Application to dynamic beam switching and deflection.Meeting Optical Switching (1987),FB1-1, pp. 98–103.

    Google Scholar 

  42. Glass (A.). Photorefractive materials and their applications.Spring Verlag (1988).

  43. Pauliat (G.). Propriétés non linéaires dans les matériaux photoréfractifs bso et bgo à l’interconnexion dynamique.Thèse de Docteur es-Sciences, Univ. d’Orsay (1986), n° 140.

  44. Goltz (J.). Four wave mixing in photorefractive crystals with depleted pumps.Optics Letters (1988),13, n° 4, pp. 321–326.

    Article  Google Scholar 

  45. Imbert (B.). High photorefractive gain in two beam coupling with motiving fringes in GaAs: Cr crystals.Optics Letters (1988),13, n° 4, pp. 327–329.

    Article  Google Scholar 

  46. Maingue (B.). Characterization of photorefractive effect in InP: Fe by using two-wave mixing under electric fields.Optics Letters (1988),13, n° 8, pp. 657–659.

    Article  Google Scholar 

  47. Bylsma (R. B.). Photochromic gratings in photorefractive materials.Optics Letters (1988),13, n° 10, pp. 853–855.

    Article  Google Scholar 

  48. Gravey (P.), Picoli (G.). Stabilisation of photorefractive tow beam coupling in InP: Fe under high dc fields by temperature stabilisation control.Optics Comm. (1989),10, n° 3, pp. 190–194.

    Article  Google Scholar 

  49. Klein (M. B.). Beam coupling in doped GaAs at 1.06 u using the photorefractive effect.Optics Letters (1984),9, n° 8, p. 350.

    Article  Google Scholar 

  50. Glass (A. M). Four wave mixing in insulating InP and GaAs using photorefractive effect.Appl. Phys. (1984),44, n° 10, p. 948.

    Google Scholar 

  51. Weiss (S.). Double conjugate mirror analysis, demonstration and applications.Optics Letters (1987),11, n° 2, pp. 114–116.

    Article  Google Scholar 

  52. Fainman (Y). Optical coherent image amplification by tow wave coupling in photorefractive BaTiO3.Optics Eng (1986),25, n° 2, pp. 228–234.

    Google Scholar 

  53. Golomb (M. C). Theory and applications of four wave mixing in photorefractive media. IEEE J. QE (1984), 20, n° 12.

  54. Feinberg (J.). Real time edge enhancement using the photorefractive effect.Optics Letters (1980),5, p. 330.

    Article  Google Scholar 

  55. Huignard (J. P.). Real time coherent object edge reconstruction with bso cristals.Appl. Opt. (1978),17, p. 2671.

    Article  Google Scholar 

  56. Petrov (M. P.). Double phase-conjugate mirror using a photorefractive Bil2TiO20 cristals.Optics Letters (1989),14, n° 5, pp. 284–286.

    Article  Google Scholar 

  57. Wolfer (N.). Analys of dpcm in absorbing photorefractive cristals : application to BGO/Ccr.(A paraître).

  58. Wolfer (N.). Characterization of cooper doped bgo : application to DPCM. (A paraître).

  59. Mollenauer (J. F.). Standards of métropolitain aéra network.IEEE Comm. Mag. (1988),20, n° 4, pp. 15–19.

    Article  Google Scholar 

  60. Newman (R. M.). The qpsx man.IEEE Comm. Mag. (1988),20, n° 4, pp. 20–28.

    Article  Google Scholar 

  61. Rimet. Réalisations de coupleurs entre une et plusieurs fibres optiques multimodes.Opto (1984).

  62. Chong-Wei Tseng, d-net, a new science for high data rate optical local area networks.IEEE J. Select Area Comm. (1983),1, n° 3.

    Google Scholar 

  63. Lecoy. Conception et réalisation de bus de données optiques. Opto (1984).

  64. Baues. Local area networks based on fiber-optical communication technology.Siemens Forsch-u. Entwicki. Springer Verlag (1983),12, n° 1.

  65. Guignard (P.). Influence de l’introduction des techniques optiques sur l’architecture des réseaux privés. Thèse du 4 octobre 1988, Université de Limoges.

  66. Goto. Optical time division digital switching : an experiment.OFC’83 (fév. 1983),6.

  67. Kondo. High speed optical time switch with integrated optical 1 × 4 switches and single polarisation fiber delay lines.Hth International Conf. Integrated Optics and Opt. Commun. (1983), pp. 438–439.

  68. Ikeda. Experimental application of ld switch modules to 256 Mbit/s optical time switching.Elect. Lett. (1985),21, n° 20, pp. 945–946.

    Article  Google Scholar 

  69. Thompson. An experimental photonic time slot interchanger using optical fibers as reentrant delay line memories.J. Lightwave Technol. (1987),5, n° 1, pp. 154–162.

    Article  Google Scholar 

  70. Thompson. Optimizing photonic variable inter delay circuits.Meeting Optical Switching (1987), pp. 141-143.

  71. Kenneth. Optical fiber delay-line signal processing.IEE Trans. Microwave Technol. (1985),33, n° 3.

  72. Stokes. All fiber stimulated Brillouin ring laser with submillewatt pump threshold.Opt. Lett. (1982),7, n° 10, p. 509.

    Article  Google Scholar 

  73. Desurvire. Raman amplification of recirculating pulses in reentrant fiber loop.Opt. Lett. (1985),10, n° 2, p. 83.

    Article  Google Scholar 

  74. Thomas. Possibility of using an optical fiber Brillouin ring laser for internal sensing.Appl. Op. Lett. (1980),19, n° 12, p. 1906.

    Article  Google Scholar 

  75. Nakazawa. Synchronously pumped fiber Raman gyroscope.Opt. Lett. (1985),10, n° 4, p. 193.

    Article  Google Scholar 

  76. Stolen. Active-fiber in D. B. Ostrowsky, Boston.Martinas Nijihoff (1984).

  77. Ben Meriem. Multiplexage en fréquences optiques. Démultiplexage hétérodyne.DCICNETILABIROCISFOI17 (juil. 1983), pp. 54–59.

  78. Desurvke. Signal to noise ratio in Raman active fiber systems : application to recirculating delay-line.j. Lightwave Technol. (1986),4, n° 5.

  79. Tarucha. Complementary optical bistable switching and triode operation using LiNbO3 directional coupler.IEEE J. Quantum Elect. (1981),17, n° 3.

  80. Miller. Novel hybrid optically bistable switch: the quantum well self-electrooptic effect device.Appl. Phys. Lett. (1984),45, pp. 13–15.

    Article  Google Scholar 

  81. Okumura. Optical bistability and monolithic logic functions based on bistable laser/light emitting diodes.IEEE J. Quantum Elect. (1985),21, n° 4.

  82. Ogagiri. Bistable laser diode memory for optical time division switching applications. Conf. Lasers.Electro-Optics, THJ3 Anaheim, CA (1984).

    Google Scholar 

  83. Yamamoto. Large scale and low loss optical switch matrix for optical switching systems.J. Opt. Comm. (1980),1, n° 2.

  84. Masataka Shirasaki. Magneto-optic 2 × 2 switch for single-mode fibers.Appl. Optics (1984),23, n° 19, pp. 3271–3276.

    Google Scholar 

  85. Yamamoto. Large scale and low loss optical switch matrix for optical switching systems.j. Opt. Comm. (1980),1, pp. 74–79.

    Google Scholar 

  86. Kubotta. Traveling wave optical modulator using a directional coupler LiNbO3 waveguide.IEEE J. Quantum Elect. (1980),16, n°7.

  87. Kondo. Integrated optical switch matrix for single mode fiber networks.IEEE J. Quantum Elect. (1982),18, n° 10.

  88. Haya. An integrated 1 × 4 high-speed optical switch and its applications to a time demultiplexer.IEEE]. Lightwave Technol. (1983),3, n° 3.

  89. Takenchi. Sub-mm long GaAs/AlGaAs directionnal coupler optical switch with low operating voltage.OEC’86 (1986), Tokyo.

  90. Fujiwara. Gigahertz-bandwidth InGaAs/InP optical modulators/switches with double hetero waveguides.Elect. Lett. (1984),20, n° 13, p. 790–792.

    Article  Google Scholar 

  91. Yamamoto. International waveguide type optical switching with quantum well structure.Trans. IECE of Japan (1985),68, n° 11.

  92. Yamamoto. Electric field induced refractive index variation in quantum well structure.Elect. Lett. (1985),21, pp. 573–580.

    Article  Google Scholar 

  93. Glick (M.). Optical waveguide properties of multiquantum wells. Integrated optics.ECIO’85 (1985), Berlin, pp. 99–102.

  94. Tohmori (Y). Novel structure GalnAsP/InP 1.5-1.6 µm bundle integrated guide (big) distributed bragg reflector laser.J. Appl. Phys., Japan (1985),24, pp. L399-L401.

    Article  Google Scholar 

  95. Miller. Room temperature saturation characteristics of GaAs-GaAlAs multiple quantum well structures and of bulk GaAs.Appl. Phys. (1982),28, pp. 96–97.

    Google Scholar 

  96. Chemla. Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures.IEEE J. Quantum Elect. (1984),20, n° 3, pp. 265–275.

    Article  Google Scholar 

  97. Lee. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGnAs, multiple quantum well structure grown by (mocvd).Meeting Optical Switching (1987).

  98. Miller. Photonic switching devices based on multiple quantum well structures.Meeting Optical Switching (1987).

  99. Ajisawa. GaAs/AlGaAs mqw 2 × 2 optical integrated gates.Meeting Optical Switching (1987), pp. 62–64.

  100. Sakaki. Novel quantum well optical bistability device with excellent on/off ratio and high speed capability.Elect. Lett. (1988),24, n° 1.

  101. Kinsel. Wide-band optical communication systems. Part I: time division multiplexing.Proc. IEEE (1970),58, pp. 1666–1683.

    Article  Google Scholar 

  102. Thewalt. Time domain multiplexing of signals on an optical fiber using mode locked laser pulses.IBM Tech. Disc Bull (oct. 1981),24, pp. 2473–2476.

    Google Scholar 

  103. Korotky. Fully connectorized high-speed Ti: LiNbO3 switch/ modulation for time division multiplexing and data encoding.J. Lightwave Technology (1985),3, pp. 1–6.

    Article  Google Scholar 

  104. Tucker. Optical time division multiplexing and demultiplexing in a multigigabit/second fiber transmission systems.Elec. Lett. (1987),23, pp. 208–209.

    Article  Google Scholar 

  105. Prucnal. 12.5 Gbit/s fiber optic network using all optical processing.Elect. Lett. (1987),23, n° 21, pp. 629–630.

    Article  Google Scholar 

  106. Tucker. Optical time division multiplexed transmission system experiment at 8 Gbit/s.Elect. Lett. (1987),23, n° 21, pp. 1115- 1116.

    Article  Google Scholar 

  107. Eisenstein. Active mode locking characteristic of InGaAsP single mode fiber composit cavity lasers.IEEE J. Quantum Elect. (1986),22, pp. 142–148.

    Article  Google Scholar 

  108. Gnauck. Information Bundwith limited transmission at 8 Gbit/s over 68.3 km of single mode optical fiber.Digest of Conf. Optical Fiber Commun., Atlanta PDP9 (1986).

  109. Tucker. 16 Gbit/s fiber transmission experiment using optical time division multiplexing.Elect. Lett. (1987),23, n° 24, pp. 1270–1271.

    Article  Google Scholar 

  110. Alferness. High-speed △µ reversal directionnal coupler switch.Meeting Photonic Switching Th DG-1 (1987), pp. 77–79.

  111. Davies. Computer networks and protocolsWiley, New York (1981), chap. 5.

    Google Scholar 

  112. Prucnal. Ultrafast all-optical synchronous multiple access fiber networks.IEEE J. Select Areas in Commun, (dec. 1986),4, n° 9, pp. 1484–1493.

    Article  Google Scholar 

  113. Ronald. Fibernet II: a fiber optic Ethernet.IEEE J. Select in Areas Commun, (nov. 1983), 1, n° 5, pp. 702–720.

    Article  Google Scholar 

  114. Lee. Very high speed back illuminated InGaAs/InP Pin punch through photodiodes.Elect. Lett. (1981),17, pp. 431–432.

    Article  Google Scholar 

  115. Forrest. Optical detectors: three contenders.IEEE Spectrum (mai 1981),23, n° 5, pp. 76–81.

    Google Scholar 

  116. Holden. An InP/InGaAsP avalanche photodiode exhibiting a gain bandwidth product of 60 GHz.Digest OFC’86, WCC8 (fév. 1986), pp. 98.

  117. Capasso. New direction in photodetectors from new solid-state photomultipliers to effective mass filters.Digest OFC’87, M95 (1987).

  118. Gibbs. Optical bistability controlling light with light.Academic, New York (1985).

    Google Scholar 

  119. Smith. On the physical limits of digital optical switching and logic elements.Bell Lab. Tech.J. (oct. 1982),61, pp. 1975–1993.

    Google Scholar 

  120. Ozeki. New star coupler compatible with single-multimode fiber data links.Elect. Lett. (1976),12, pp. 151–152.

    Article  Google Scholar 

  121. Hocker. Unidirectional star coupler for single fiber distribution systems.Opt. Lett. (oct. 1977),1, pp. 124–125.

    Article  Google Scholar 

  122. Prucnal. tdma fiber optic network with optical processing.Elect. Lett. (nov. 1986),22, n° 23.

  123. Cooper. A spread spectrum technique for high capacity mobile communications.IEEE Trans. VEHI Tech. (nov. 1978),27, pp. 264–275.

    Article  Google Scholar 

  124. Kochevar. Spread spectrum multiple accès communication experiment through a satellite.IEEE Trans. Comm. (ao×Bt 1979),2F, pp. 853–856.

    Google Scholar 

  125. Ramis. Systèmes de radiocommunication avec les mobiles.CNET/ENST (1987).

  126. Dixon. Spread spectrum systems.Wiley, New York (1984).

    Google Scholar 

  127. Einarsson. Adress assignement for time-frequency coded, spread spectrum systems. Bell Syst. Tech. J. (1980),n° 59, pp. 1241–1255.

  128. Pickholtz. Theory of spread spectrum communications.IEEE Trans. COM (mai 1982),30, n° 5, pp. 855–884.

    Article  Google Scholar 

  129. Yue. Spread spectrum mobile radio, 1977–1982.IEEE Trans. VEH (fév. 1983),32, n° 1.

  130. Kleinrock. Packet switching in radio channels. Part 1: carrier sense multiple-acus modes and their throughput-delay characteristics.IEEE Trans. Comm. (dec. 1975),23, pp. 1400–1416.

    Article  MATH  Google Scholar 

  131. Szpankowski. Packet switching in multiple radio channels: analysis and stability of a random access systems.Compt. Networks (1983),7, pp. 17–26.

    Article  Google Scholar 

  132. Brazio. Theoretical results in throughput analysis of multishop packet radio networks.Proc. ICC, Amsterdam (1984).

  133. Tamura. Optical code-multiplex transmission by code Gold sequences.J. Lightwave Technol. (fév. 1985),3, n° 1, pp. 121–127.

    Article  Google Scholar 

  134. Gold. Optimal theory sequences for spread spectrum multiplexing.IEEE Trans. Infor. Theory (1967),13, pp. 619–621.

    Article  MATH  Google Scholar 

  135. Shaar, Davies. Prime sequences: quasi optimal sequences for channel code division multiplexing.Elect. Lett. (1983),19, pp. 888–889.

    Article  Google Scholar 

  136. Joseph. Throughput analysis for division multiple accessing of the spread spectrum.J. Selected Area, Comm. (juil. 1984),2, n° 4, pp. 482–486.

    Article  Google Scholar 

  137. Frenet. Wirless terminal communication using spread spectrum radio. Proc.IEEE Compcon’80 pp. 244–248.

  138. Santoro. Asynchronous fiber optical local area network using coma and optical correlation.Proc. IEEE (1987),75, n° 9.

    Google Scholar 

  139. Prucnal. Spread spectrum fiber-optic local area network using optical processing.J. Ligthwave Tech. (1986),4, n° 5, pp. 547- 554.

    Article  Google Scholar 

  140. Gorary (J.), Foschini. Using spread spectrum in high capacity fiber-optic local network.J. Lightwave Tech. (1988),6, n° 3, pp. 370–378.

    Article  Google Scholar 

  141. Favre. Optical feed back effects repon laser diode oscillation field spectrum.IEEE J. QE (1982),18, pp. 1712–1717.

    Article  Google Scholar 

  142. Goldberg (L.). Spectral characteristics of semi-conductor lasers with optical feed back.IEEE J. QE (1982),18, pp. 555–554.

    Article  Google Scholar 

  143. Mendietta. Thèse Docteur-Ingénieur.ENSTIE 82013 (1982).

  144. Reisinger. Coherence of room temperature CW GaAs/GaAlAs injection laser.IEEEJ. QE (1979),15, pp. 1382–1387.

    Article  Google Scholar 

  145. Yariv (A.). Laser noise.Ecole d’été de Cargèse, NATO (1982).

  146. Latters. An ultrafast all optical gate.IEEE J. QE (1983),19, n° 11, pp. 1718–1723.

    Article  Google Scholar 

  147. Haque. Microprocessor and optoelectronic based packet switch for satellite communications.Proc. IEEE ICC’81 (1981),1, n° 15.3, pp. 82–86.

    Google Scholar 

  148. Huang. Optical switching computers.Proc. IEEE, GLOBE COM’ 84 (1984),2, n° 28.8, pp. 903–906.

    Google Scholar 

  149. Husain. Optical processing for futur computer networks.Optical Engineering (1986),25, n° 1, pp. 108–116.

    Google Scholar 

  150. Prucnel. Self-routing photonic switching demonstration with optical control.Opt. Eng. (1987),26, pp. 473–477.

    Google Scholar 

  151. Prucnel. Self-routing optical switch with optical processing.Meeting Optical Switching, Th B4-1 (1987), pp. 42–44.

  152. Reszewski. A photonic switch architectures utilising code division multiplexing.Meeting on Photonic Switching, FD5-1 (1987), pp. 144–146.

  153. Prucnal. Photonic switch with optical self-routed bit switching.IEEE Comm. Mag. (1987),25, n° 5, pp. 50–55.

    Article  Google Scholar 

  154. Blumenthal. Performance of an 8 × 8 LiNbÛ3 switch as GHz self-routine switching code.Elect. Lett. (dec. 1987),25, n° 23, pp. 1359–1360.

    Article  Google Scholar 

  155. Alexander. Dynamic optical interconnexion for parallel processors.Opt. Computing, Proc. SPIE (1986),625, pp. 143–153.

    Google Scholar 

  156. Tada Hiko Yasui. Overview of optical switching technologies in Japan.IEEE Comm. Mag. (1987),25, n° 5.

    Google Scholar 

  157. Ben Meriem. Multiplexage en longueurs d’ondes : état de l’art et perspectives.DTICNETIROCISFO (1982).

  158. Ben Meriem. Multiplexage par répartition en longueurs d’ondes appliqué aux réseaux locaux et interurbains sur fibres optiques.J. Télécommunic., IUT Genève (1985), n° 7.

  159. Kanada. Design and performance of wdm transmission systems at 6.3 Mbit/s.IEEE Trans. COM (1983),3, n° 3.

  160. Ito. Wavelength division multiplexing system using a monolithically integrated laser array and an integrated optic multi/demultiplexer.Optical Fiber Comm. Conf. MH5, Atlanta (1986).

  161. Inouie. Tunable optical multi/demultiplexer for optical fdm transmission systems.Elect. Lett. (1985),21, n° 9, pp. 387–389.

    Article  Google Scholar 

  162. Inouîe. A conceptional design on optical frequency division multiplexing distribution systems with optical tunables filters.IEEE J. Selected Areas Comm. (1986),4, n° 9, pp. 1458–1467.

    Article  Google Scholar 

  163. Olsson. Transmission with 1.37 Tbit/s-km capacity using ten wavelengths division multiplexed lasers at 1.5 µm.Digest OFC’85, WBG (1985).

  164. Kmite. Ultra-high speed in GaAsP/InP dfb lasers emitting at 1.3 µm wavelengths.IEEE J. QE (juin 1987),23, n° 6, pp. 804–814.

    Article  Google Scholar 

  165. Chikama. Distributed feedback laser diode module with a novel and compact optical isolation for gigabit optical transmission systems.Digest OFC’86, ME-1 (1986).

  166. Bouley (J. C). Evolution et perspectives des structures lasers pour les télécommunications.Echo de recherches (1987), n° 130, pp. 59–67.

  167. Tsang. 1.5 µm wavelength GalnAsP C3 lasers : single frequency operation and wideband frequency tuning. (1983).

  168. Muratta. Over 720 GHz (5.8 nm) frequency tuning by a 1.5 µm dfb laser with phase and Bragg wavelength control regions.Elect. Lett. (1987),23, n° 8, pp. 403.

    Article  Google Scholar 

  169. Muratta. Spectral characteristic of 1.5 µm dfb-dcpbh laser with frequency tuning region.10th IEEE International semiconductor laser Conf., B3, Kanazawa, Japan (1986).

  170. Kotaki. 1.5 µm wavelength tunable fbh-dbr.Elect. Lett. (1987),23, n° 7, pp. 329.

    Article  Google Scholar 

  171. Jaquet. Etude théorique d’un laser à 3 sections permettant une émission monomode continüment accordable en longueur d’onde.9 e Journées Nationales d’Optique Guidée, Lannion (24- 25 mars 1988).

  172. Tarakedo. Optical filter using dfb-lb. National Conf. Optic : radio wave.Elect. IEEE, Japan (1984), pp. 326.

  173. Payne. Wavelength switched passively coupled, single mode optical network.Proc. IOOC ECOC’s 1985, Venise (0000),1, pp. 585.

    Google Scholar 

  174. Mallinson. Wavelength selective filters for single mode fiber WDM systems using Fabry-Pérot interferometers.Appl. Opt. (1987),26, pp. 430–436.

    Article  Google Scholar 

  175. Stone. Ultra-high finesse fiber Fabry-Pérot interferometers.J. Lightwave Technol. (1986),4, pp. 382–385.

    Article  Google Scholar 

  176. Stone. Pigtailed high finesse tunable fibre Fabry-Pérot interferometers with large medium and small free spectral rangers.Elect. Lett. (1987),23, pp. 781–783.

    Article  Google Scholar 

  177. Frenkel. On line tunable étalon filter for optical channel selection in hight density wavelength division multiplexed fiber systems.Elect. Lett. (1988),24, n° 3, pp. 159–161.

    Article  MathSciNet  Google Scholar 

  178. Yamamoto.Elect. Lett. (1985),21, n° 13, pp. 579.

    Article  Google Scholar 

  179. Alferness.Appl. Phys. Lett. (1986),49, n° 3.

  180. Suzuki. Optical broadband communication network architecture utilising wavelength division switching technologies.Meeting on Optical Switching, FhA2-l (1987), pp. 21–23.

  181. Simon, Monerie. atAmplification optique.Echo des Recherches (1985), n° 122, pp. 35–42.

  182. Jopson (R. M.). Optical amplifiers for photonic switches.Meeting on Photonic Switching, FC1-1 (1987), pp. 116–118.

  183. Olsson. An optical switching and routine system using frequency tunable cleaved coupled cavity semiconductors lasers.IEEE J. QE (1984),20, n° 4, pp. 332–334.

    Article  Google Scholar 

  184. Shimazu. Wavelength division multiplexing optical switch using acoustooptic deflector. IEEE J. Lightwave Technol. (1987), 5, n° 112.

  185. Le Kavich. Basic of acoustooptic devices.Las. Appl. (avr. 1986), pp. 59.

  186. Bagshaw. Anisotropie Bragg cells.GEC J. Res. (1984),2, n° 2, pp. 96.

    Google Scholar 

  187. Suhara. Integrated optics components and devices using période structures.j. QE (1988),22, n° 6, pp. 845.

    Article  Google Scholar 

  188. Toba.ECOC’87 (1987), 1, pp. 303.

    Google Scholar 

  189. Bachus. Coherent optical fiber subscriber line.ECOC’ (1985), 3, pp. 6164.

    Google Scholar 

  190. Foisel. Ten-channel coherent hdtv/tv distribution system.ECOC’87 (1987),1, pp. 287–290.

    Google Scholar 

  191. Gabriagues (J. M). L’état de l’art des technologies de multiplexage spectral pour les réseaux à fibres optiques.9 e Journées Nationales de l’Optique Guidée, IUT Lannion (1988).

  192. Fujrwara. Optical switching in coherent lightwave systems.Meeting on Optical Switching, ThA4-l (1987), pp. 27–29.

  193. Saleh. Reflective single mode fiber optic passive star couplers.J. Lightwave Techn. (1988),6, n° 1, pp. 392–397.

    Article  Google Scholar 

  194. Ronald, Schmidt. Fibernet II: a fiber optic Ethernet.IEEE J. Selected Area in Comm. (nov. 1983),1, n° 5, pp. 702–710.

    Article  Google Scholar 

  195. Bulley (R. M.). Experimental demonstration of Lamdanet: a multiwavelength optical network.ECOC’7 (1987),1, pp. 345–348.

    Google Scholar 

  196. Glance (B.). Density speed wdm coherent optical star network.Elect. Lett. (1987),23, pp. 875.

    Article  Google Scholar 

  197. Kasper. Balanced dual detector recever for optical heterodyne communication at Gbit/s rates.Elect. Lett. (1986),22, pp. 413.

    Article  Google Scholar 

  198. Glance (B.). Frequency stabilisation of fdm optical signals.Elect. Lett. (1987),23, pp. 750.

    Article  Google Scholar 

  199. Glance (B.). Réseau en étoile multiplexé en fréquence à faible encombrement spectral à détection hétérodyne utilisant un verrouillage en fréquence des canaux optiques.9 e Journées Nationales de l’Optique Guidée, IUT Lannion (mars 1988).

  200. Cotter. Transient stimulated Brillouin scattering in long single mode fibers.Elect. Lett. (10 juin 1982),18, n° 12.

  201. Isam Habbab. Protocols for very high-speed optical fiber local area networks using a passive star topology.J. Lightwave Techn. (1987),5, n° 12, pp. 1782–1793.

    Article  Google Scholar 

  202. Kazovsky (L.). Impact of laser phase noise on optical heterodyne communication system.J. Optical Comm. (1986),7, n° 8, pp. 66.

    Google Scholar 

  203. Arthurs (E.). Multiwavelength optical crossconnect for parallel-processing computers.Elect. Lett. (1988),24, pp. 119–120.

    Article  Google Scholar 

  204. Arthurs (E.) hypass, an optoelectronic hybrid packet switching system.J. Selected Area in Comm. (1988),6, pp. 1500–1520.

    Article  Google Scholar 

  205. Hluchyj (M. J.). Shuffelnet : an application of generalized perfect shuffles to multishoplightwave networks.Proc. Infocn. (1988),88.

  206. Acompora (A. S.). An overview of light wave packet network.IEEE Network (jan. 1989),3, pp. 4–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meriem, T.B. Ingénierie des systèmes de commutation optique et des réseaux locaux à large bande sur fibres optiques : analyses et perspectives. Ann. Télécommun. 45, 555–576 (1990). https://doi.org/10.1007/BF02995308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995308

Mots cléés

Key words

Navigation