Advertisement

Ingénierie des systèmes de commutation optique et des réseaux locaux à large bande sur fibres optiques : analyses et perspectives

  • Tayeb Ben Meriem
Article
  • 37 Downloads

Résumé

Après un rappel sur l’évolution de la fonction commutation dansle rnis, qui met l’accent sur la mutation du commutateur temporel classique, l’article présente une analyse prospective et une évaluation des techniques et technologies utilisables en commutation optique et dans les réseaux à large bande : systèmes de commutation optiques spatiaux (architectures, technologies à base de diélectriques, de semiconducteurs, de matériaux photoréfractifs) et temporels (mémoires optiques à base de lignes à retard et de composants bistables, multiplexage); réseaux à accès multiple (amrt, accès multiple en code); commutation utilisant le spectre étalé (commutation de bits) ; commutation en longueur d’onde (multiplexeurs-démultiplexeurs, lasers et filtres accordables); commutation de paquets dans les réseaux multilongueurs d’onde (normalisation des réseaux à large bande, réseaux locaux en bus, étoile passive et multiétoile, commutation cohérente).

Résumé

Après un rappel sur l’évolution de la fonction commutation dans le rnis, qui met l’accent sur la mutation du commutateur temporel classique, l’article présente une analyse prospective et une évaluation des techniques et technologies utilisables en commutation optique et dans les réseaux à large bande : systèmes de commutation optiques spatiaux (architectures, technologies à base de diélectriques, de semiconducteurs, de matériaux photoréfractifs) et temporels (mémoires optiques à base de lignes à retard et de composants bistables, multiplexage); réseaux à accès multiple (amrt, accès multiple en code); commutation utilisant le spectre étalé (commutation de bits) ; commutation en longueur d’onde (multiplexeurs-démultiplexeurs, lasers et filtres accordables); commutation de paquets dans les réseaux multilongueurs d’onde (normalisation des réseaux à large bande, réseaux locaux en bus, étoile passive et multiétoile, commutation cohérente).

Mots cléés

Commutation optique Etat actuel technique Télécommunication optique Large bande Haut débit Commutation spatiale Commutation temporelle Commutation longueur onde Réseau numérique intégration services Réseau local entreprise Accès multiple Spectre étalé Composant optique 

Engineering of photonetics switching systems and optical fiber metropolitan area networks : analysis and perspectives

Abstract

This paper first reviews how switching evolves in the ISDN environment with emphasize placed on changes in conventionnal time-division switches, then assesses techniques and technologies usable in optical switching and broadband networks : optical space-division switching systems (architecture, technologies based on dielectrics, semiconductors, photorepactive material) and optical time-division switching (optical memories based on delay lines and on bistable components multiplexing); multiple access networks (tdma, multiple access by code) ; switching using spread spectrum (bit switching); wavelength switching (multiplexer-demultiplexer, tunable laser and filters) ; packet switching in multi-wavelength networks (broadband networks standardization, local area networks with bus, passive star or multi-star configuration).

Key words

Optical switching State of the art Optical telecommunication Wide band High rate Space division switching Time division switching Wavelength division switching Integrated services digital network Local area network Multiple access Spread spectrum Optical component 

Bibliographie

  1. [1]
    Pennanech, Hauri (J.). Le commutateur, pièce maîtresse du RNIS.Commutation/Transmission (1987), n° 3.Google Scholar
  2. [2]
    Jezequel (M.). Les perspectives d’évolution du rnis. Commutation/Transmission.Google Scholar
  3. [3]
    ***.Commutation/Transmission (1987), n° 4.Google Scholar
  4. [4]
    Santos (J. M.). Boc 800 service: offering the customer more choices.Bell Commun. Res. Exchange (jan. 1986),2, pp. 18–22.Google Scholar
  5. [5]
    Hass (R. J.). Introducing the intelligent network.Bell Commun. Res. Exchange (juil. 1986),2, pp. 2–7.Google Scholar
  6. [6]
    Easton (R. L.). TASi-E communications systems.IEEE Trans. COM (avr. 1982),30, pp. 803–807.CrossRefGoogle Scholar
  7. [7]
    Haselton (E. F.). apcm frame switching concept leading to burst switching network architecture.ICC’83 Conf. Rec. (juin 1983),3, pp. 1401–1406.Google Scholar
  8. [8]
    Amstutz (S. R.). Burst switching network architecture. An introduction.IEEE Commun. Mag. (nov. 1983),21, pp. 36–42.CrossRefGoogle Scholar
  9. [9]
    Montgomery (W. A.). Techniques for packet voice synchronisation.IEEE J. Selected Areas Commun, (dec. 1983),SAC-1, pp. 1022–1028.CrossRefGoogle Scholar
  10. [10]
    Kulzer (J. J.). Statistical switching architectures of future services.Proc. ISS’84, session 43 A (1984), pp. 1–6.Google Scholar
  11. [11]
    Turner (J. S.). A packet network architecture for integrated services.Proc. GLOBECOM’83, session 2.1 (1983), pp. 1–6.Google Scholar
  12. [12]
    Hoberecht (W. L.). Layered network protocols for packet voice and data integration. Proc. GLOBECOM’83, session 2.3 (1983), pp. 1–6.Google Scholar
  13. [13]
    Clos. A study of non blocking switching networks.Bell Syst. tech. J. (mars 1953), pp. 407–424.Google Scholar
  14. [14]
    Benes. Mathematical theory of connecting network and telephone traffic.Academic Press, New York (1965).Google Scholar
  15. [15]
    Coudreuse (J. P.). Prelude ou la naissance d’une technique de transfert de l’information.Echo des Recherches n° 126-4B (1986).Google Scholar
  16. [16]
    Goke. Banyan networks for partitioning multiprocessing systems.Proc. of First Annual Computer Architecture Conference (déc. 1973), pp. 21–28.Google Scholar
  17. [17]
    Hinton. A non blocking optical interconnection network using directional couplers.GLOBECOM (1984), pp. 26.5.1–26.5.5.Google Scholar
  18. [18]
    Hinton. Photonic switching using directional couplers.IEEE Commun. Mag. (1987),25, n° 5.Google Scholar
  19. [19]
    Spanke, Benes. N-stage planar optical permutation network.Applied Optic, (avr. 1987),26.Google Scholar
  20. [20]
    Spanke. Architectures for large nonblocking optical space switches.IEEE J. of Quantum Electr. (1986),22, pp. 964–968.CrossRefGoogle Scholar
  21. [21]
    Joel. On permutation switching networks.Bell Syst. tech. J. (mai-juin 1968), pp. 813–822.Google Scholar
  22. [22]
    Hill. On sided rearrangeable optical switching networks. J. Lightwave Techn. (19.86),4, n° 7.Google Scholar
  23. [23]
    Warshan. A permutation networks.J. Assoc. Computing Machining (1968),15, pp. 159–163.Google Scholar
  24. [24]
    Gaylord. A two stages rearrangeable broadcast switching network.IEEE Trans. COM (1983),33, n° 10, pp. 1025–1035.Google Scholar
  25. [25]
    Kondo. 32 switch elements integrated low crosstalk LiNbO3 4 × 4 optical matrix switch.IOOC-ECOC85, Venise (1985), pp. 361–364.Google Scholar
  26. [26]
    Spanke. Architecture for guided wave optical space switching systems.Meeting on Optical Switching (1987), pp. 42–48.Google Scholar
  27. [27]
    Feng. A survy of interconnection using directionnal couplers.IEEE Computers (déc. 1981),14, pp. 12–27.Google Scholar
  28. [28]
    Wu. On a class of multistage interconnection networks.IEEE Trans. Computers (1980),29, pp. 694–702.MATHCrossRefGoogle Scholar
  29. [29]
    Sawchuk (A.). Dynamic optical interconnections for parallel processors.SPIE, Los Angeles (jan. 1986),625.Google Scholar
  30. [30]
    Shimoe. A path indépendant insertion loss optic space switching network.ISS’87, pp. 1–27.Google Scholar
  31. [31]
    Krishnan. Dilated networks for photonic switching.IEEE Trans. COM (1987),35, n° 12, pp. 1357–1365.MathSciNetCrossRefGoogle Scholar
  32. [32]
    Hinton. Photonic switching using directional couplers.IEEE Commun. Mag. (1987),25, n° 5, pp. 16–25.MathSciNetCrossRefGoogle Scholar
  33. [33]
    Watson (J. E.). Polarisation independent 1 × 16 optical switch using Ti : LiNbO3 waveguides.Conf. on Optical Fiber Commun., San Diego, CA (fév. 1985), p. 110.Google Scholar
  34. [34]
    Ctyroky. Voltage length product of X and Z. Cut Ti: LiNbO3 directional coupler and boa switches : a comparison.J. Opt. Commun. (1984),7, pp. 139–143.Google Scholar
  35. [35]
    Neyer (A.). Single mode electrooptic X switch for integrated optic switching networks.IEE Second European Conference on Integrated Optics (oct. 1983),227, pp. 136–139.Google Scholar
  36. [36]
    Bogert (G. A.). 4 × 4 Ti : LiNbO3 switch array with full broadcast capability meeting optical switching.ThD3.1 (1987), pp. 68–70.Google Scholar
  37. [37]
    Korotky (K.). 14 Gbit/s optical signal encoding for = 1.32 µra with double pulse drive of Ti: LiNbO3 waveguide modulator.Electr. Lett. (1984),20, pp. 132–133.CrossRefGoogle Scholar
  38. [38]
    Tsai. Optical channel waveguide switch and coupler using total internal reflection.IEEE J. Quantum Elect. (1978),14, n° 7, pp. 513–517.CrossRefGoogle Scholar
  39. [39]
    Gravey (P.). Principe of broadband and high capacity optical switching system using reversible holographic grating P. 16.7th ECOC 81, University Press Copenhagen (1981).Google Scholar
  40. [40]
    Herriau. Dynamic beam deflection using photorefractive gratings in bso cristals.J. Opt. Soc. Am. B (févr. 1986), 3, n° 2.Google Scholar
  41. [41]
    Huignard (J. P.). Wave-mixing in non linear photorefractive materials. Application to dynamic beam switching and deflection.Meeting Optical Switching (1987),FB1-1, pp. 98–103.Google Scholar
  42. [42]
    Glass (A.). Photorefractive materials and their applications.Spring Verlag (1988).Google Scholar
  43. [43]
    Pauliat (G.). Propriétés non linéaires dans les matériaux photoréfractifs bso et bgo à l’interconnexion dynamique.Thèse de Docteur es-Sciences, Univ. d’Orsay (1986), n° 140.Google Scholar
  44. [44]
    Goltz (J.). Four wave mixing in photorefractive crystals with depleted pumps.Optics Letters (1988),13, n° 4, pp. 321–326.CrossRefGoogle Scholar
  45. [45]
    Imbert (B.). High photorefractive gain in two beam coupling with motiving fringes in GaAs: Cr crystals.Optics Letters (1988),13, n° 4, pp. 327–329.CrossRefGoogle Scholar
  46. [46]
    Maingue (B.). Characterization of photorefractive effect in InP: Fe by using two-wave mixing under electric fields.Optics Letters (1988),13, n° 8, pp. 657–659.CrossRefGoogle Scholar
  47. [47]
    Bylsma (R. B.). Photochromic gratings in photorefractive materials.Optics Letters (1988),13, n° 10, pp. 853–855.CrossRefGoogle Scholar
  48. [48]
    Gravey (P.), Picoli (G.). Stabilisation of photorefractive tow beam coupling in InP: Fe under high dc fields by temperature stabilisation control.Optics Comm. (1989),10, n° 3, pp. 190–194.CrossRefGoogle Scholar
  49. [49]
    Klein (M. B.). Beam coupling in doped GaAs at 1.06 u using the photorefractive effect.Optics Letters (1984),9, n° 8, p. 350.CrossRefGoogle Scholar
  50. [50]
    Glass (A. M). Four wave mixing in insulating InP and GaAs using photorefractive effect.Appl. Phys. (1984),44, n° 10, p. 948.Google Scholar
  51. [52]
    Weiss (S.). Double conjugate mirror analysis, demonstration and applications.Optics Letters (1987),11, n° 2, pp. 114–116.CrossRefGoogle Scholar
  52. [53]
    Fainman (Y). Optical coherent image amplification by tow wave coupling in photorefractive BaTiO3.Optics Eng (1986),25, n° 2, pp. 228–234.Google Scholar
  53. [54]
    Golomb (M. C). Theory and applications of four wave mixing in photorefractive media. IEEE J. QE (1984), 20, n° 12.Google Scholar
  54. [55]
    Feinberg (J.). Real time edge enhancement using the photorefractive effect.Optics Letters (1980),5, p. 330.CrossRefGoogle Scholar
  55. [56]
    Huignard (J. P.). Real time coherent object edge reconstruction with bso cristals.Appl. Opt. (1978),17, p. 2671.CrossRefGoogle Scholar
  56. [57]
    Petrov (M. P.). Double phase-conjugate mirror using a photorefractive Bil2TiO20 cristals.Optics Letters (1989),14, n° 5, pp. 284–286.CrossRefGoogle Scholar
  57. [58]
    Wolfer (N.). Analys of dpcm in absorbing photorefractive cristals : application to BGO/Ccr.(A paraître). Google Scholar
  58. [59]
    Wolfer (N.). Characterization of cooper doped bgo : application to DPCM. (A paraître).Google Scholar
  59. [60]
    Mollenauer (J. F.). Standards of métropolitain aéra network.IEEE Comm. Mag. (1988),20, n° 4, pp. 15–19.CrossRefGoogle Scholar
  60. [61]
    Newman (R. M.). The qpsx man.IEEE Comm. Mag. (1988),20, n° 4, pp. 20–28.CrossRefGoogle Scholar
  61. [62]
    Rimet. Réalisations de coupleurs entre une et plusieurs fibres optiques multimodes.Opto (1984).Google Scholar
  62. [63]
    Chong-Wei Tseng, d-net, a new science for high data rate optical local area networks.IEEE J. Select Area Comm. (1983),1, n° 3.Google Scholar
  63. [64]
    Lecoy. Conception et réalisation de bus de données optiques. Opto (1984).Google Scholar
  64. [65]
    Baues. Local area networks based on fiber-optical communication technology.Siemens Forsch-u. Entwicki. Springer Verlag (1983),12, n° 1.Google Scholar
  65. [66]
    Guignard (P.). Influence de l’introduction des techniques optiques sur l’architecture des réseaux privés. Thèse du 4 octobre 1988, Université de Limoges.Google Scholar
  66. [67]
    Goto. Optical time division digital switching : an experiment.OFC’83 (fév. 1983),6.Google Scholar
  67. [68]
    Kondo. High speed optical time switch with integrated optical 1 × 4 switches and single polarisation fiber delay lines.Hth International Conf. Integrated Optics and Opt. Commun. (1983), pp. 438–439.Google Scholar
  68. [69]
    Ikeda. Experimental application of ld switch modules to 256 Mbit/s optical time switching.Elect. Lett. (1985),21, n° 20, pp. 945–946.CrossRefGoogle Scholar
  69. [70]
    Thompson. An experimental photonic time slot interchanger using optical fibers as reentrant delay line memories.J. Lightwave Technol. (1987),5, n° 1, pp. 154–162.CrossRefGoogle Scholar
  70. [71]
    Thompson. Optimizing photonic variable inter delay circuits.Meeting Optical Switching (1987), pp. 141-143.Google Scholar
  71. [72]
    Kenneth. Optical fiber delay-line signal processing.IEE Trans. Microwave Technol. (1985),33, n° 3.Google Scholar
  72. [73]
    Stokes. All fiber stimulated Brillouin ring laser with submillewatt pump threshold.Opt. Lett. (1982),7, n° 10, p. 509.CrossRefGoogle Scholar
  73. [74]
    Desurvire. Raman amplification of recirculating pulses in reentrant fiber loop.Opt. Lett. (1985),10, n° 2, p. 83.CrossRefGoogle Scholar
  74. [75]
    Thomas. Possibility of using an optical fiber Brillouin ring laser for internal sensing.Appl. Op. Lett. (1980),19, n° 12, p. 1906.CrossRefGoogle Scholar
  75. [76]
    Nakazawa. Synchronously pumped fiber Raman gyroscope.Opt. Lett. (1985),10, n° 4, p. 193.CrossRefGoogle Scholar
  76. [77]
    Stolen. Active-fiber in D. B. Ostrowsky, Boston.Martinas Nijihoff (1984).Google Scholar
  77. [78]
    Ben Meriem. Multiplexage en fréquences optiques. Démultiplexage hétérodyne.DCICNETILABIROCISFOI17 (juil. 1983), pp. 54–59.Google Scholar
  78. [79]
    Desurvke. Signal to noise ratio in Raman active fiber systems : application to recirculating delay-line.j. Lightwave Technol. (1986),4, n° 5.Google Scholar
  79. [80]
    Tarucha. Complementary optical bistable switching and triode operation using LiNbO3 directional coupler.IEEE J. Quantum Elect. (1981),17, n° 3.Google Scholar
  80. [81]
    Miller. Novel hybrid optically bistable switch: the quantum well self-electrooptic effect device.Appl. Phys. Lett. (1984),45, pp. 13–15.CrossRefGoogle Scholar
  81. [82]
    Okumura. Optical bistability and monolithic logic functions based on bistable laser/light emitting diodes.IEEE J. Quantum Elect. (1985),21, n° 4.Google Scholar
  82. [83]
    Ogagiri. Bistable laser diode memory for optical time division switching applications. Conf. Lasers.Electro-Optics, THJ3 Anaheim, CA (1984).Google Scholar
  83. [84]
    Yamamoto. Large scale and low loss optical switch matrix for optical switching systems.J. Opt. Comm. (1980),1, n° 2.Google Scholar
  84. [85]
    Masataka Shirasaki. Magneto-optic 2 × 2 switch for single-mode fibers.Appl. Optics (1984),23, n° 19, pp. 3271–3276.Google Scholar
  85. [86]
    Yamamoto. Large scale and low loss optical switch matrix for optical switching systems.j. Opt. Comm. (1980),1, pp. 74–79.Google Scholar
  86. [87]
    Kubotta. Traveling wave optical modulator using a directional coupler LiNbO3 waveguide.IEEE J. Quantum Elect. (1980),16, n°7.Google Scholar
  87. [88]
    Kondo. Integrated optical switch matrix for single mode fiber networks.IEEE J. Quantum Elect. (1982),18, n° 10.Google Scholar
  88. [89]
    Haya. An integrated 1 × 4 high-speed optical switch and its applications to a time demultiplexer.IEEE]. Lightwave Technol. (1983),3, n° 3.Google Scholar
  89. [90]
    Takenchi. Sub-mm long GaAs/AlGaAs directionnal coupler optical switch with low operating voltage.OEC’86 (1986), Tokyo.Google Scholar
  90. [91]
    Fujiwara. Gigahertz-bandwidth InGaAs/InP optical modulators/switches with double hetero waveguides.Elect. Lett. (1984),20, n° 13, p. 790–792.CrossRefGoogle Scholar
  91. [92]
    Yamamoto. International waveguide type optical switching with quantum well structure.Trans. IECE of Japan (1985),68, n° 11.Google Scholar
  92. [93]
    Yamamoto. Electric field induced refractive index variation in quantum well structure.Elect. Lett. (1985),21, pp. 573–580.CrossRefGoogle Scholar
  93. [94]
    Glick (M.). Optical waveguide properties of multiquantum wells. Integrated optics.ECIO’85 (1985), Berlin, pp. 99–102.Google Scholar
  94. [95]
    Tohmori (Y). Novel structure GalnAsP/InP 1.5-1.6 µm bundle integrated guide (big) distributed bragg reflector laser.J. Appl. Phys., Japan (1985),24, pp. L399-L401.CrossRefGoogle Scholar
  95. [96]
    Miller. Room temperature saturation characteristics of GaAs-GaAlAs multiple quantum well structures and of bulk GaAs.Appl. Phys. (1982),28, pp. 96–97.Google Scholar
  96. [97]
    Chemla. Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures.IEEE J. Quantum Elect. (1984),20, n° 3, pp. 265–275.CrossRefGoogle Scholar
  97. [98]
    Lee. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGnAs, multiple quantum well structure grown by (mocvd).Meeting Optical Switching (1987).Google Scholar
  98. [99]
    Miller. Photonic switching devices based on multiple quantum well structures.Meeting Optical Switching (1987).Google Scholar
  99. [100]
    Ajisawa. GaAs/AlGaAs mqw 2 × 2 optical integrated gates.Meeting Optical Switching (1987), pp. 62–64.Google Scholar
  100. [101]
    Sakaki. Novel quantum well optical bistability device with excellent on/off ratio and high speed capability.Elect. Lett. (1988),24, n° 1.Google Scholar
  101. [102]
    Kinsel. Wide-band optical communication systems. Part I: time division multiplexing.Proc. IEEE (1970),58, pp. 1666–1683.CrossRefGoogle Scholar
  102. [103]
    Thewalt. Time domain multiplexing of signals on an optical fiber using mode locked laser pulses.IBM Tech. Disc Bull (oct. 1981),24, pp. 2473–2476.Google Scholar
  103. [104]
    Korotky. Fully connectorized high-speed Ti: LiNbO3 switch/ modulation for time division multiplexing and data encoding.J. Lightwave Technology (1985),3, pp. 1–6.CrossRefGoogle Scholar
  104. [105]
    Tucker. Optical time division multiplexing and demultiplexing in a multigigabit/second fiber transmission systems.Elec. Lett. (1987),23, pp. 208–209.CrossRefGoogle Scholar
  105. [106]
    Prucnal. 12.5 Gbit/s fiber optic network using all optical processing.Elect. Lett. (1987),23, n° 21, pp. 629–630.CrossRefGoogle Scholar
  106. [107]
    Tucker. Optical time division multiplexed transmission system experiment at 8 Gbit/s.Elect. Lett. (1987),23, n° 21, pp. 1115- 1116.CrossRefGoogle Scholar
  107. [108]
    Eisenstein. Active mode locking characteristic of InGaAsP single mode fiber composit cavity lasers.IEEE J. Quantum Elect. (1986),22, pp. 142–148.CrossRefGoogle Scholar
  108. [109]
    Gnauck. Information Bundwith limited transmission at 8 Gbit/s over 68.3 km of single mode optical fiber.Digest of Conf. Optical Fiber Commun., Atlanta PDP9 (1986).Google Scholar
  109. [110]
    Tucker. 16 Gbit/s fiber transmission experiment using optical time division multiplexing.Elect. Lett. (1987),23, n° 24, pp. 1270–1271.CrossRefGoogle Scholar
  110. [111]
    Alferness. High-speed △µ reversal directionnal coupler switch.Meeting Photonic Switching Th DG-1 (1987), pp. 77–79.Google Scholar
  111. [112]
    Davies. Computer networks and protocolsWiley, New York (1981), chap. 5.Google Scholar
  112. [113]
    Prucnal. Ultrafast all-optical synchronous multiple access fiber networks.IEEE J. Select Areas in Commun, (dec. 1986),4, n° 9, pp. 1484–1493.CrossRefGoogle Scholar
  113. [114]
    Ronald. Fibernet II: a fiber optic Ethernet.IEEE J. Select in Areas Commun, (nov. 1983), 1, n° 5, pp. 702–720.CrossRefGoogle Scholar
  114. [115]
    Lee. Very high speed back illuminated InGaAs/InP Pin punch through photodiodes.Elect. Lett. (1981),17, pp. 431–432.CrossRefGoogle Scholar
  115. [116]
    Forrest. Optical detectors: three contenders.IEEE Spectrum (mai 1981),23, n° 5, pp. 76–81.Google Scholar
  116. [117]
    Holden. An InP/InGaAsP avalanche photodiode exhibiting a gain bandwidth product of 60 GHz.Digest OFC’86, WCC8 (fév. 1986), pp. 98.Google Scholar
  117. [118]
    Capasso. New direction in photodetectors from new solid-state photomultipliers to effective mass filters.Digest OFC’87, M95 (1987).Google Scholar
  118. [119]
    Gibbs. Optical bistability controlling light with light.Academic, New York (1985).Google Scholar
  119. [120]
    Smith. On the physical limits of digital optical switching and logic elements.Bell Lab. Tech.J. (oct. 1982),61, pp. 1975–1993.Google Scholar
  120. [121]
    Ozeki. New star coupler compatible with single-multimode fiber data links.Elect. Lett. (1976),12, pp. 151–152.CrossRefGoogle Scholar
  121. [122]
    Hocker. Unidirectional star coupler for single fiber distribution systems.Opt. Lett. (oct. 1977),1, pp. 124–125.CrossRefGoogle Scholar
  122. [123]
    Prucnal. tdma fiber optic network with optical processing.Elect. Lett. (nov. 1986),22, n° 23.Google Scholar
  123. [124]
    Cooper. A spread spectrum technique for high capacity mobile communications.IEEE Trans. VEHI Tech. (nov. 1978),27, pp. 264–275.CrossRefGoogle Scholar
  124. [125]
    Kochevar. Spread spectrum multiple accès communication experiment through a satellite.IEEE Trans. Comm. (ao×Bt 1979),2F, pp. 853–856.Google Scholar
  125. [126]
    Ramis. Systèmes de radiocommunication avec les mobiles.CNET/ENST (1987).Google Scholar
  126. [127]
    Dixon. Spread spectrum systems.Wiley, New York (1984).Google Scholar
  127. [128]
    Einarsson. Adress assignement for time-frequency coded, spread spectrum systems. Bell Syst. Tech. J. (1980),n° 59, pp. 1241–1255.Google Scholar
  128. [129]
    Pickholtz. Theory of spread spectrum communications.IEEE Trans. COM (mai 1982),30, n° 5, pp. 855–884.CrossRefGoogle Scholar
  129. [130]
    Yue. Spread spectrum mobile radio, 1977–1982.IEEE Trans. VEH (fév. 1983),32, n° 1.Google Scholar
  130. [131]
    Kleinrock. Packet switching in radio channels. Part 1: carrier sense multiple-acus modes and their throughput-delay characteristics.IEEE Trans. Comm. (dec. 1975),23, pp. 1400–1416.MATHCrossRefGoogle Scholar
  131. [132]
    Szpankowski. Packet switching in multiple radio channels: analysis and stability of a random access systems.Compt. Networks (1983),7, pp. 17–26.CrossRefGoogle Scholar
  132. [133]
    Brazio. Theoretical results in throughput analysis of multishop packet radio networks.Proc. ICC, Amsterdam (1984).Google Scholar
  133. [134]
    Tamura. Optical code-multiplex transmission by code Gold sequences.J. Lightwave Technol. (fév. 1985),3, n° 1, pp. 121–127.CrossRefGoogle Scholar
  134. [135]
    Gold. Optimal theory sequences for spread spectrum multiplexing.IEEE Trans. Infor. Theory (1967),13, pp. 619–621.MATHCrossRefGoogle Scholar
  135. [136]
    Shaar, Davies. Prime sequences: quasi optimal sequences for channel code division multiplexing.Elect. Lett. (1983),19, pp. 888–889.CrossRefGoogle Scholar
  136. [137]
    Joseph. Throughput analysis for division multiple accessing of the spread spectrum.J. Selected Area, Comm. (juil. 1984),2, n° 4, pp. 482–486.CrossRefGoogle Scholar
  137. [138]
    Frenet. Wirless terminal communication using spread spectrum radio. Proc.IEEE Compcon’80 pp. 244–248.Google Scholar
  138. [139]
    Santoro. Asynchronous fiber optical local area network using coma and optical correlation.Proc. IEEE (1987),75, n° 9.Google Scholar
  139. [140]
    Prucnal. Spread spectrum fiber-optic local area network using optical processing.J. Ligthwave Tech. (1986),4, n° 5, pp. 547- 554.CrossRefGoogle Scholar
  140. [141]
    Gorary (J.), Foschini. Using spread spectrum in high capacity fiber-optic local network.J. Lightwave Tech. (1988),6, n° 3, pp. 370–378.CrossRefGoogle Scholar
  141. [142]
    Favre. Optical feed back effects repon laser diode oscillation field spectrum.IEEE J. QE (1982),18, pp. 1712–1717.CrossRefGoogle Scholar
  142. [143]
    Goldberg (L.). Spectral characteristics of semi-conductor lasers with optical feed back.IEEE J. QE (1982),18, pp. 555–554.CrossRefGoogle Scholar
  143. [144]
    Mendietta. Thèse Docteur-Ingénieur.ENSTIE 82013 (1982).Google Scholar
  144. [145]
    Reisinger. Coherence of room temperature CW GaAs/GaAlAs injection laser.IEEEJ. QE (1979),15, pp. 1382–1387.CrossRefGoogle Scholar
  145. [146]
    Yariv (A.). Laser noise.Ecole d’été de Cargèse, NATO (1982).Google Scholar
  146. [147]
    Latters. An ultrafast all optical gate.IEEE J. QE (1983),19, n° 11, pp. 1718–1723.CrossRefGoogle Scholar
  147. [148]
    Haque. Microprocessor and optoelectronic based packet switch for satellite communications.Proc. IEEE ICC’81 (1981),1, n° 15.3, pp. 82–86.Google Scholar
  148. [149]
    Huang. Optical switching computers.Proc. IEEE, GLOBE COM’ 84 (1984),2, n° 28.8, pp. 903–906.Google Scholar
  149. [150]
    Husain. Optical processing for futur computer networks.Optical Engineering (1986),25, n° 1, pp. 108–116.Google Scholar
  150. [151]
    Prucnel. Self-routing photonic switching demonstration with optical control.Opt. Eng. (1987),26, pp. 473–477.Google Scholar
  151. [152]
    Prucnel. Self-routing optical switch with optical processing.Meeting Optical Switching, Th B4-1 (1987), pp. 42–44.Google Scholar
  152. [153]
    Reszewski. A photonic switch architectures utilising code division multiplexing.Meeting on Photonic Switching, FD5-1 (1987), pp. 144–146.Google Scholar
  153. [154]
    Prucnal. Photonic switch with optical self-routed bit switching.IEEE Comm. Mag. (1987),25, n° 5, pp. 50–55.CrossRefGoogle Scholar
  154. [155]
    Blumenthal. Performance of an 8 × 8 LiNbÛ3 switch as GHz self-routine switching code.Elect. Lett. (dec. 1987),25, n° 23, pp. 1359–1360.CrossRefGoogle Scholar
  155. [156]
    Alexander. Dynamic optical interconnexion for parallel processors.Opt. Computing, Proc. SPIE (1986),625, pp. 143–153.Google Scholar
  156. [157]
    Tada Hiko Yasui. Overview of optical switching technologies in Japan.IEEE Comm. Mag. (1987),25, n° 5.Google Scholar
  157. [158]
    Ben Meriem. Multiplexage en longueurs d’ondes : état de l’art et perspectives.DTICNETIROCISFO (1982).Google Scholar
  158. [159]
    Ben Meriem. Multiplexage par répartition en longueurs d’ondes appliqué aux réseaux locaux et interurbains sur fibres optiques.J. Télécommunic., IUT Genève (1985), n° 7.Google Scholar
  159. [160]
    Kanada. Design and performance of wdm transmission systems at 6.3 Mbit/s.IEEE Trans. COM (1983),3, n° 3.Google Scholar
  160. [161]
    Ito. Wavelength division multiplexing system using a monolithically integrated laser array and an integrated optic multi/demultiplexer.Optical Fiber Comm. Conf. MH5, Atlanta (1986).Google Scholar
  161. [162]
    Inouie. Tunable optical multi/demultiplexer for optical fdm transmission systems.Elect. Lett. (1985),21, n° 9, pp. 387–389.CrossRefGoogle Scholar
  162. [163]
    Inouîe. A conceptional design on optical frequency division multiplexing distribution systems with optical tunables filters.IEEE J. Selected Areas Comm. (1986),4, n° 9, pp. 1458–1467.CrossRefGoogle Scholar
  163. [164]
    Olsson. Transmission with 1.37 Tbit/s-km capacity using ten wavelengths division multiplexed lasers at 1.5 µm.Digest OFC’85, WBG (1985).Google Scholar
  164. [165]
    Kmite. Ultra-high speed in GaAsP/InP dfb lasers emitting at 1.3 µm wavelengths.IEEE J. QE (juin 1987),23, n° 6, pp. 804–814.CrossRefGoogle Scholar
  165. [166]
    Chikama. Distributed feedback laser diode module with a novel and compact optical isolation for gigabit optical transmission systems.Digest OFC’86, ME-1 (1986).Google Scholar
  166. [167]
    Bouley (J. C). Evolution et perspectives des structures lasers pour les télécommunications.Echo de recherches (1987), n° 130, pp. 59–67.Google Scholar
  167. [168]
    Tsang. 1.5 µm wavelength GalnAsP C3 lasers : single frequency operation and wideband frequency tuning. (1983).Google Scholar
  168. [169]
    Muratta. Over 720 GHz (5.8 nm) frequency tuning by a 1.5 µm dfb laser with phase and Bragg wavelength control regions.Elect. Lett. (1987),23, n° 8, pp. 403.CrossRefGoogle Scholar
  169. [170]
    Muratta. Spectral characteristic of 1.5 µm dfb-dcpbh laser with frequency tuning region.10th IEEE International semiconductor laser Conf., B3, Kanazawa, Japan (1986).Google Scholar
  170. [171]
    Kotaki. 1.5 µm wavelength tunable fbh-dbr.Elect. Lett. (1987),23, n° 7, pp. 329.CrossRefGoogle Scholar
  171. [172]
    Jaquet. Etude théorique d’un laser à 3 sections permettant une émission monomode continüment accordable en longueur d’onde.9 e Journées Nationales d’Optique Guidée, Lannion (24- 25 mars 1988).Google Scholar
  172. [173]
    Tarakedo. Optical filter using dfb-lb. National Conf. Optic : radio wave.Elect. IEEE, Japan (1984), pp. 326.Google Scholar
  173. [174]
    Payne. Wavelength switched passively coupled, single mode optical network.Proc. IOOC ECOC’s 1985, Venise (0000),1, pp. 585.Google Scholar
  174. [175]
    Mallinson. Wavelength selective filters for single mode fiber WDM systems using Fabry-Pérot interferometers.Appl. Opt. (1987),26, pp. 430–436.CrossRefGoogle Scholar
  175. [176]
    Stone. Ultra-high finesse fiber Fabry-Pérot interferometers.J. Lightwave Technol. (1986),4, pp. 382–385.CrossRefGoogle Scholar
  176. [177]
    Stone. Pigtailed high finesse tunable fibre Fabry-Pérot interferometers with large medium and small free spectral rangers.Elect. Lett. (1987),23, pp. 781–783.CrossRefGoogle Scholar
  177. [178]
    Frenkel. On line tunable étalon filter for optical channel selection in hight density wavelength division multiplexed fiber systems.Elect. Lett. (1988),24, n° 3, pp. 159–161.MathSciNetCrossRefGoogle Scholar
  178. [179]
    Yamamoto.Elect. Lett. (1985),21, n° 13, pp. 579.CrossRefGoogle Scholar
  179. [180]
    Alferness.Appl. Phys. Lett. (1986),49, n° 3.Google Scholar
  180. [181]
    Suzuki. Optical broadband communication network architecture utilising wavelength division switching technologies.Meeting on Optical Switching, FhA2-l (1987), pp. 21–23.Google Scholar
  181. [182]
    Simon, Monerie. atAmplification optique.Echo des Recherches (1985), n° 122, pp. 35–42.Google Scholar
  182. [183]
    Jopson (R. M.). Optical amplifiers for photonic switches.Meeting on Photonic Switching, FC1-1 (1987), pp. 116–118.Google Scholar
  183. [184]
    Olsson. An optical switching and routine system using frequency tunable cleaved coupled cavity semiconductors lasers.IEEE J. QE (1984),20, n° 4, pp. 332–334.CrossRefGoogle Scholar
  184. [185]
    Shimazu. Wavelength division multiplexing optical switch using acoustooptic deflector. IEEE J. Lightwave Technol. (1987), 5, n° 112.Google Scholar
  185. [186]
    Le Kavich. Basic of acoustooptic devices.Las. Appl. (avr. 1986), pp. 59.Google Scholar
  186. [187]
    Bagshaw. Anisotropie Bragg cells.GEC J. Res. (1984),2, n° 2, pp. 96.Google Scholar
  187. [188]
    Suhara. Integrated optics components and devices using période structures.j. QE (1988),22, n° 6, pp. 845.CrossRefGoogle Scholar
  188. [189]
    Toba.ECOC’87 (1987), 1, pp. 303.Google Scholar
  189. [190]
    Bachus. Coherent optical fiber subscriber line.ECOC’ (1985), 3, pp. 6164.Google Scholar
  190. [191]
    Foisel. Ten-channel coherent hdtv/tv distribution system.ECOC’87 (1987),1, pp. 287–290.Google Scholar
  191. [192]
    Gabriagues (J. M). L’état de l’art des technologies de multiplexage spectral pour les réseaux à fibres optiques.9 e Journées Nationales de l’Optique Guidée, IUT Lannion (1988).Google Scholar
  192. [193]
    Fujrwara. Optical switching in coherent lightwave systems.Meeting on Optical Switching, ThA4-l (1987), pp. 27–29.Google Scholar
  193. [194]
    Saleh. Reflective single mode fiber optic passive star couplers.J. Lightwave Techn. (1988),6, n° 1, pp. 392–397.CrossRefGoogle Scholar
  194. [195]
    Ronald, Schmidt. Fibernet II: a fiber optic Ethernet.IEEE J. Selected Area in Comm. (nov. 1983),1, n° 5, pp. 702–710.CrossRefGoogle Scholar
  195. [196]
    Bulley (R. M.). Experimental demonstration of Lamdanet: a multiwavelength optical network.ECOC’7 (1987),1, pp. 345–348.Google Scholar
  196. [197]
    Glance (B.). Density speed wdm coherent optical star network.Elect. Lett. (1987),23, pp. 875.CrossRefGoogle Scholar
  197. [198]
    Kasper. Balanced dual detector recever for optical heterodyne communication at Gbit/s rates.Elect. Lett. (1986),22, pp. 413.CrossRefGoogle Scholar
  198. [199]
    Glance (B.). Frequency stabilisation of fdm optical signals.Elect. Lett. (1987),23, pp. 750.CrossRefGoogle Scholar
  199. [200]
    Glance (B.). Réseau en étoile multiplexé en fréquence à faible encombrement spectral à détection hétérodyne utilisant un verrouillage en fréquence des canaux optiques.9 e Journées Nationales de l’Optique Guidée, IUT Lannion (mars 1988).Google Scholar
  200. [201]
    Cotter. Transient stimulated Brillouin scattering in long single mode fibers.Elect. Lett. (10 juin 1982),18, n° 12.Google Scholar
  201. [202]
    Isam Habbab. Protocols for very high-speed optical fiber local area networks using a passive star topology.J. Lightwave Techn. (1987),5, n° 12, pp. 1782–1793.CrossRefGoogle Scholar
  202. [203]
    Kazovsky (L.). Impact of laser phase noise on optical heterodyne communication system.J. Optical Comm. (1986),7, n° 8, pp. 66.Google Scholar
  203. [204]
    Arthurs (E.). Multiwavelength optical crossconnect for parallel-processing computers.Elect. Lett. (1988),24, pp. 119–120.CrossRefGoogle Scholar
  204. [205]
    Arthurs (E.) hypass, an optoelectronic hybrid packet switching system.J. Selected Area in Comm. (1988),6, pp. 1500–1520.CrossRefGoogle Scholar
  205. [206]
    Hluchyj (M. J.). Shuffelnet : an application of generalized perfect shuffles to multishoplightwave networks.Proc. Infocn. (1988),88.Google Scholar
  206. [207]
    Acompora (A. S.). An overview of light wave packet network.IEEE Network (jan. 1989),3, pp. 4–12.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Tayeb Ben Meriem
    • 1
  1. 1.Direction de l’enseignement supérieurInstitut national des télécommunicationsEvry Cedex

Personalised recommendations