Annals of Nuclear Medicine

, 16:1 | Cite as

A shifting landseape: What will be next FDG in PET oncology?

  • Tomio Inoue
  • Noboru Oriuchi
  • Katsumi Tomiyoshi
  • Keigo Endo


The tumor-seeking agent most widely used in positron emission tomography (PET) is 2-18F-fluorodeoxy-d-glucose (FDG). The clinical usefulness of FDG PET has already been proved in detecting, staging and restaging various kinds of malignant tumors, but nuclear medicine physicians suffer from a “diagnostic dilemma,” in which a relatively high false positive ratio of FDG PET in diagnosing malignant tumors prevails. To increase more specific tumor uptake or more specific tumor characterization, numerous PET radiopharmaceuticals have been developed, and some of them are being tested in clinical trials. This review will briefly survey the tumor uptake mechanism and clinical significance of representative non-FDG PET radiopharmaceuticals used in clinical trials for patients with cancers.

Key words

FDG PET PET oncology 


  1. 1.
    Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-d-glucose.J Nucl Med 1978; 19: 1154–1161.PubMedGoogle Scholar
  2. 2.
    Sazon DA, Santiago SM, Soo Hoo GW, et al. Fluorodeoxy-glucose-positron emission tomography in the detection and staging of lung cancer.Am J Respir Crit Care Med 1996; 153: 417–421.PubMedGoogle Scholar
  3. 3.
    Pieterman RM, van Putten JWG, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron emission tomography.N Engl J Med 2000; 343: 254–261.PubMedCrossRefGoogle Scholar
  4. 4.
    Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography. A prospective study.J Nucl Med 1993; 31: 1927–1933.Google Scholar
  5. 5.
    Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG-PET.J Nucl Med 1995; 36: 788–793.PubMedGoogle Scholar
  6. 6.
    Sasaki M, Ichiya Y, Kuwabara Y, et al. The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with nonsmall cell lung cancer: a comparative study with X-ray computed tomography.Eur J Nucl Med 1996; 23: 741–747.PubMedCrossRefGoogle Scholar
  7. 7.
    Bar-Shalom R, Mor M, Yefremov N, Goldsmith SJ. The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment.Semin Nucl Med 2001; 31: 177–190.PubMedCrossRefGoogle Scholar
  8. 8.
    Buchmann I, Reinhardt M, Elsner K, et al. 2-(fluorine-18)fluoro-2-deoxy-d-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial.Cancer 2001; 91: 889–899.PubMedCrossRefGoogle Scholar
  9. 9.
    Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid altermative to conventional diagnostic method?J Clin Oncol 2001; 19: 414–419.PubMedGoogle Scholar
  10. 10.
    Hueltenschmidt B, Sautter-Bihl ML, Lang O, et al. Whole body positron emission tomography in the treatment of Hodgkin disease.Cancer 2001; 91: 302–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Kostakoglu L, Goldsmith SJ. Fluorine-18 fluorodeoxy-glucose positron emission tomography in the staging and follow-up of lymphoma: is it time to shift gears?Eur J Nucl Med 2000; 27: 1564–1578.PubMedCrossRefGoogle Scholar
  12. 12.
    Hung GU, Shiau YC, Tsai SC, Chao TH, Ho YJ, Kao CH. Value of18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent colorectal cancer.Anticancer Res 2001; 21: 1375–1378.PubMedGoogle Scholar
  13. 13.
    Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET).Eur J Cancer2001; 37: 862–869.PubMedCrossRefGoogle Scholar
  14. 14.
    Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology.Semin Nucl Med 2000; 30: 150–185.PubMedCrossRefGoogle Scholar
  15. 15.
    Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18–2-fluoro-2-deoxy-d-glucose in recurrent colorectal cancer.J Clin Oncol 1999; 17: 894–901.PubMedGoogle Scholar
  16. 16.
    Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorogdeoxyglucose whole-body PET: correlation with histopathologic and CT findings.Radiology 1998; 206: 755–760.PubMedGoogle Scholar
  17. 17.
    Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging.J Clin Oncol 2001; 19: 3058–3065.PubMedGoogle Scholar
  18. 18.
    Lerut T, Flamen P, Ectors N, et al. Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: A prospective study based on primary surgery with extensive lymphadenectomy.Ann Surg 2000; 232: 743–752.PubMedCrossRefGoogle Scholar
  19. 19.
    Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer.J Thorac Cardiovasc Surg 2000; 120: 1085–1092.PubMedCrossRefGoogle Scholar
  20. 20.
    Flamen P, Lerut A, Van Cutsem E, et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma.J Clin Oncol 2000; 18: 3202–3210.PubMedGoogle Scholar
  21. 21.
    Skehan SJ, Brown AL, Thompson M, et al. Imaging features of primary and recurrent esophageal cancer at FDG PET.Radiographics 2000; 20: 713–723.PubMedGoogle Scholar
  22. 22.
    Crippa F, Leutner M, Belli F, et al. Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma.J Nucl Med 2000; 41: 1491–1494.PubMedGoogle Scholar
  23. 23.
    Tyler DS, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma.Cancer 2000; 89: 1019–1025.PubMedCrossRefGoogle Scholar
  24. 24.
    Eigtved A, Andersson AP, Dahlstrom K, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma.Eur J Nucl Med 2000; 27: 70–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Dietlein M, Krug B, Groth W, et al. Positron emission tomography using18F-fluorodeoxyglucose in advanced stages of malignant melanoma: a comparison of ultrasonographic and radiological methods of diagnosis.Nucl Med Commun 1999; 20: 255–261.PubMedCrossRefGoogle Scholar
  26. 26.
    Steinert HC, Huch Boni RA, Buck A, et al. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-d-glucose.Radiology 1995; 195: 705–709.PubMedGoogle Scholar
  27. 27.
    Lonneux M, Lawson G, Ide C, Bausart R, Remacle M, Pauwels S. Positron emission tomography with fluoro-deoxyglucose for suspected head and neck tumor recurrence in the symptomatic patient.Laryngoscope 2000; 110: 1493–1497.PubMedCrossRefGoogle Scholar
  28. 28.
    Jungehulsing M, Scheidhauer K, Damm M, et al. 2[F]-fluoro-2-deoxy-d-glucose positron emission tomography is a sensitive tool for the detection of occult primary cancer (carcinoma of unknown primary syndrome) with head and neck lymph node manifestation.Otolaryngol Head Neck Surg 2000; 123: 294–301.PubMedCrossRefGoogle Scholar
  29. 29.
    Lowe VJ, Boyd JH, Dunphy FR, et al. Surveillance for recurrent head and neck cancer using positron emission tomography.J Clin Oncol 2000; 18: 651–658.PubMedGoogle Scholar
  30. 30.
    Anzai Y, Minoshima S, Wolf GT, Wahl RL. Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET.Radiology 1999; 212: 285–290.PubMedGoogle Scholar
  31. 31.
    Engel H, Steinert H, Buck A, Berthold T, Huch Boni RA, von Schulthess GK. Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations.J Nucl Med 1996; 37: 441–446.PubMedGoogle Scholar
  32. 32.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucosein vivo: high accumulation in macrophages and granulation tissues studies by microautoradiography.J Nucl Med 1992; 33: 1972–1980.PubMedGoogle Scholar
  33. 33.
    Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Active and passive mechanisms of [fluorine-18]fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cellsin vivo: a microautoradiographic study.J Nucl Med 1994; 35: 1067–1075.PubMedGoogle Scholar
  34. 34.
    Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake.J Nucl Med 1994; 35: 104–112.PubMedGoogle Scholar
  35. 35.
    Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG.J Nucl Med 1995; 36: 484–492.PubMedGoogle Scholar
  36. 36.
    Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, Ido T. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine,L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67.J Nucl Med 1991; 32: 2118–2123.PubMedGoogle Scholar
  37. 37.
    Ogawa T, Shishido F, Kanno I, et al. Related Articles Cerebral glioma: evaluation with methionine PET.Radiology 1993; 186: 45–53.PubMedGoogle Scholar
  38. 38.
    Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1932.PubMedGoogle Scholar
  39. 39.
    Lindholm P, Leskinen S, Lapela M. Carbon-11-methionine uptake in squamous cell head and neck cancer.J Nucl Med 1998; 39: 1393–1397.PubMedGoogle Scholar
  40. 40.
    Inoue T, Kim EE, Wong FC, et al. Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors.J Nucl Med 1996; 37: 1472–1476.PubMedGoogle Scholar
  41. 41.
    Kole AC, Pruim J, Nieweg OE, et al. PET withL-[1-carbon-11]-tyrosine to visualize tumors and measure protein synthesis rates.J Nucl Med 1997; 38: 191–195.PubMedGoogle Scholar
  42. 42.
    Kole AC, Plaat BE, Hoekstra HJ, Vaalburg W, Molenaar WM. FDG andL-[1-11C]-tyrosine imaging of soft-tissue tumors before and after therapy.J Nucl Med 1999; 40: 381–386.PubMedGoogle Scholar
  43. 43.
    van Ginkel RJ, Kole AC, Nieweg OE, et al.L-[1-11C]-tyrosine PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma and skin cancer.J Nucl Med 1999; 40: 262–267.PubMedGoogle Scholar
  44. 44.
    Braams JW, Pruim J, Nikkels PG, Roodenburg JL, Vaalburg W, Vermey A. Nodal spread of squamous cell carcinoma of the oral cavity detected with PET-tyrosine, MRI and CT.J Nucl Med 1996; 37: 897–901.PubMedGoogle Scholar
  45. 45.
    Go KG, Keuter EJ, Kamman RL, et al. Contribution of magnetic resonance spectroscopic imaging andL-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy.Neurosurgery 1994; 34: 994–1002.PubMedCrossRefGoogle Scholar
  46. 46.
    Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET ofL-(2-18F)fluorotyrosine.J Nucl Med 1991; 32: 1338–1346.PubMedGoogle Scholar
  47. 47.
    Coenen HH, Kling P, Stocklin G. Cerebral metabolism ofL-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis.J Nucl Med 1989; 30: 1367–1372.PubMedGoogle Scholar
  48. 48.
    Biersack HJ, Coenen HH, Stocklin G, et al. Imaging of brain tumors withL-3-[123I]iodo-alpha-methyl tyrosine and SPECT.J Nucl Med 1989; 30: 110–112.PubMedGoogle Scholar
  49. 49.
    Tomiyoshi K, Amed K, Muhammad S, et al. Synthesis of isomers of18F-labelled amino acid radiopharmaceutical: position 2- and 3-L-18F-alpha-methyltyrosine using a separation and purification system.Nucl Med Commun 1997; 18: 169–175.PubMedCrossRefGoogle Scholar
  50. 50.
    Inoue T, Tomiyoshi K, Higuchi T, et al. Biodistribution studies onL-3-[fluorine-18]fluoro-α-methyl tyrosine: A potential tumor-detecting agent.J Nucl Med 1998; 39: 663–667.PubMedGoogle Scholar
  51. 51.
    Inoue T, Shibasaki T, Oriuchi N, et al.18F alpha-methyl tyrosine PET studies in patients with brain tumors.J Nucl Med 1999; 40: 399–405.PubMedGoogle Scholar
  52. 52.
    Inoue T, Koyama K, Oriuchi N, et al. Detection of malignant tumors: whole-body PET with fluorine 18 alphamethyl tyrosine versus FDG—preliminary study.Radiology 2001; 220: 54–62.PubMedGoogle Scholar
  53. 53.
    Watanabe H, Inoue T, Shinozaki T, et al. PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyl-tyrosine: comparison with fluorine-18 fluorodeoxyglucose PET.Eur J Nucl Med 2000; 27: 1509–1517.PubMedCrossRefGoogle Scholar
  54. 54.
    Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology.J Nucl Med 2001; 42: 432–445.PubMedGoogle Scholar
  55. 55.
    Shinoura N, Nishijima M, Hara T, et al. Brain tumors: detection with C-11 choline PET.Radiology 1997; 202: 497–503.PubMedGoogle Scholar
  56. 56.
    Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]cholineJ Nucl Med 1997; 38: 842–847.PubMedGoogle Scholar
  57. 57.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline.J Nucl Med 1998; 39: 990–995.PubMedGoogle Scholar
  58. 58.
    Kobori O, Kirihara Y, Kosaka N, Hara T. Positron emission tomography of esophageal carcinoma using11C-choline and18F-fluorodeoxyglucose: a novel method of preoperative lymph node staging.Cancer 1999; 86: 1638–1648.PubMedCrossRefGoogle Scholar
  59. 59.
    Hara T, Inagaki K, Kosaka N, Morita T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with11C-choline PET.J Nucl Med 2000; 41: 1507–1513.PubMedGoogle Scholar
  60. 60.
    Roivainen A, Forsback S, Gronroos T, et al. Blood metabolism of [methyl-11C]choline; implications forin vivo imaging with positron emission tomography.Eur J Nucl Med 2000; 27: 25–32.PubMedCrossRefGoogle Scholar
  61. 61.
    DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer.Cancer Res 2001; 61: 110–117.PubMedGoogle Scholar
  62. 62.
    Kishi H, Hirano Y, Kosaka N, Hara T. Clinical utility of18F-fluoroethylcholine in prostate cancer imaging. (abstract)J Nucl Med 2001; 42: 120P.Google Scholar
  63. 63.
    Liu RS. Clinical Application of11C acetate.Clin Positron Imaging 2000; 3: 185.PubMedCrossRefGoogle Scholar
  64. 64.
    Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response.J Nucl Med 1998; 39: 1757–1762.PubMedGoogle Scholar
  65. 65.
    Boni R, Blauenstein P, Dummer R, von Schulthess GK, Schubiger PA, Steinert HC. Non-invasive assessment of tumour cell proliferation with positron emission tomography and [76Br]bromodeoxyuridine.Melanoma Res 1999; 9: 569–573.PubMedCrossRefGoogle Scholar
  66. 66.
    Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferationin vivo with [F-18]FLT and positron emission tomography.Nat Med 1998; 4: 1334–1336.PubMedCrossRefGoogle Scholar
  67. 67.
    Vesselle H, Grierson J, Muzi M, et al.18F-fluorothymidine PET imaging of non small cell lung cancer (NCLC): comparison to67Ki proliferation index. (abstract)J Nucl Med 2001; 42: 29P.Google Scholar
  68. 68.
    Dohmen BM, Shields AF, Dittman H, et al. Use of18F-FLT for breast cancer imaging. (abstract)J Nucl Med 2001; 42: 29P.Google Scholar
  69. 69.
    Yeh SH, Liu RS, Wu LC, et al. Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma.Eur J Nucl Med 1996; 23: 1378–1383.PubMedCrossRefGoogle Scholar
  70. 70.
    Koh WJ, Bergman KS, Rasey JS, et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography.Int J Radiat Oncol Biol Phys 1995; 33: 391–398.PubMedGoogle Scholar
  71. 71.
    Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, Raeth U, Strauss LG, Stremmel W.18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil.Cancer 1998; 83: 245–253.PubMedCrossRefGoogle Scholar
  72. 72.
    Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Intravenous and intra-arterial oxygen-15-labeled water and fluorine-18-labeled fluorouracil in patients with liver metastases from colorectal carcinoma.J Nucl Med 1998; 39: 465–473.PubMedGoogle Scholar
  73. 73.
    Wittliff JL. Steroid-hormone receptors in breast cancer.Cancer 1984; 53: 630–643.PubMedCrossRefGoogle Scholar
  74. 74.
    Jordan VC. The role of tamoxifen in the treatment and prevention of breast cancer.Current Problems in Cancer 1992; 16: 129–176.PubMedGoogle Scholar
  75. 75.
    McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16 alpha-[18F]fluoro-17 betaestradiol uptake in metastatic breast carcinoma.J Nucl Med 1991; 32: 1526–1531.PubMedGoogle Scholar
  76. 76.
    Dehdashti F, Mortimer JE, Siegel BA, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET andin vitro receptor assays.J Nucl Med 1995; 36: 1766–1774.PubMedGoogle Scholar
  77. 77.
    Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer.J Clin Oncol 2001; 19: 2797–2803.PubMedGoogle Scholar
  78. 78.
    Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Clin Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose, and 16 alpha-[18F]fluoro-17 beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy.Clin Cancer Res 1996; 2: 933–939.PubMedGoogle Scholar
  79. 79.
    Inoue T, Kim EE, Wallace S, Yang DJ, Wong FCL, Bassa P, et al. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study.Cancer Biotherapy & Radiopharmaceuticals 1996; 11: 235–245.CrossRefGoogle Scholar
  80. 80.
    Gambhir SS, Barrio JR, Wu L, et al. Imaging of adenoviraldirected herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir.J Nucl Med 1998; 39: 2003–2011.PubMedGoogle Scholar
  81. 81.
    Phelps ME. PET: the merging of biology and imaging into molecular imaging.J Nucl Med 2000; 41: 661–681.PubMedGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Tomio Inoue
    • 1
  • Noboru Oriuchi
    • 2
  • Katsumi Tomiyoshi
    • 3
  • Keigo Endo
    • 2
  1. 1.Department of RadiologyYokohama City University School of MedicineYokohamaJapan
  2. 2.Department of Nuclear MedicineGunma University School of MedicineGunmaJapan
  3. 3.Radiopharmaceutical DivisionNishidai Clinic Diagnostic Imaging CenterNishidaiJapan

Personalised recommendations