Advertisement

Annales Des Télécommunications

, Volume 45, Issue 3–4, pp 184–191 | Cite as

Al0.3Ga0.7As-GaAs microwave resonant tunneling oscillator

  • Rachid Bouregba
  • Olivier Vanbesien
  • Loic Saint de Pol
  • Didier Lippens
Article
  • 39 Downloads

Abstract

We describe the design of a microwave oscillator using resonant tunneling diodes. The devices are fabricated from Al0.3Ga0.7As-GaAs double barrier hetero-structures grown by molecular beam epitaxy. Design criteria improving current drivability are established from a theoretical study of tunneling transmission probabilities. Very high peak current densities up to 3.104 A/cm2, favorable for high frequency operation as an oscillator, have been achieved experimentally. The devices exhibit stable oscillations at liquid nitrogen temperature and at room temperature when the tunnel diode oscillator is constructed with a stabilizing network.

Key words

Microwave oscillator Tunnel diode Resonant tunnel effect Double heterojunction Gallium arsenide Aluminium gallium arsenide 

Oscillateur hyperfréquence à effet tunnel résonant dans une hétérojonction Al0.3Ga0.7As-GaAs

Résumé

Les auteurs décrivent la réalisation d’un oscillateur hyperfréquence à l’aide d’une diode à effet tunnel résonant. Les composants sont fabriqués à partir d’heterostructures de type double barrière Al0.3Ga0.7 As-GaAs épitaxiées par jet moléculaire. Leur conception est basée sur une étude théorique des probabilités de transmission par effet tunnel. Des densités de courant de crête très élevées jusqu’ à 3.104 A/cm2, favorables à un fonctionnement en oscillateur à fréquences élevées, sont obtenues expérimentalement. Les auteurs rapportent également l’observation d’oscillations stables à la température de l’azote liquidepuis à température ordinaire après insertion d’un circuit de stabilisation.

Mots clés

Oscillateur hyperfréquence Diode tunnel Effet tunnel résonant Hétérojonction double Gallium arséniure Aluminium gallium arséniure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lippens (D.), De Saint Pol (L.), Bouregba (R.), Mounaix (P.), Vinchon (T.). Resonant tunneling and hot electron effects in double barrier.Rev. Phys. appl. (1989),24, pp. 17–30.Google Scholar
  2. [2]
    Brown (E. R.), Goodhue (W. D.), Sollner (T. C. L. G.). Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationnary-state tunneling theory.J. appl. Phys. (1988),64, pp. 1519–1529.CrossRefGoogle Scholar
  3. [3]
    Kesan (V. P.), Mortazawi (A.), Miller (D. R.), Itoh (T.), Streetman (B. G.), Neikirk (D. P.). Microwave frequency operation of quantum well injection transit time (Qwitt) diode.Electronics Letters (1988),24, pp. 1473–1474.CrossRefGoogle Scholar
  4. [4]
    Rydberg (A.), Gronqvist (H.), Kollberg (E.). A theoretical and experimental investigation on millimeter-wave quantum well oscillators.Microwave and Optical Technology Letters (1988),1, pp. 333–336.CrossRefGoogle Scholar
  5. [5]
    Vassel (M. O.), Lee (J.), Lockwood (H. R.). Multibarrier tunneling in Ga1− xAlxAs/GaAs heterostructures.J. appl. Phys. (1983),54, pp. 5206–5213.CrossRefGoogle Scholar
  6. [6]
    Vanbesien (O.), Lippens (D.). DC and AC analysis of high current double barrier structures.Solid State Electronics (1989),32, pp. 1533–1537.CrossRefGoogle Scholar
  7. [7]
    Lippens (D.), Lorriaux (J. L.), Vanbesien (O.), De Saint Pol (L.). Experimental investigationof the effect of inelastic scattering on resonant tunneling.Proceedings of the 16th international Symposium on gallium arsenide and related compounds (1989).Google Scholar
  8. [8]
    De Saint Pol (L.), Lippens (D.), Clerot (E), Lambert (B.), Deveaud (B.), Sermage (B.). Time domain analysis of resonant tunneling in double barrier heterostructure.Proceedings of the 16th international Symposium on gallium arsenide and related compounds (1989).Google Scholar
  9. [9]
    Huang (C. I.), Paulus (M. J.), Bozada (C. A.), Dudley (S. C), Evans (K. R.), Stutz (C. E.), Jones (R. L.), Cheney (M. E.). AlGaAs/GaAs double barrier diodes with high peak-to-valley current ratio.Appl. Phys. Letters (1987),51, pp. 121–123.CrossRefGoogle Scholar
  10. [10]
    Liu (H. C.). Simulation of extrinsic testability of resonant tunneling structures.Appl. Phys. Letters (1988),53, pp. 485–486.CrossRefGoogle Scholar
  11. [11]
    Young (J. E), Wood (B. M), Liu (H. C.), Buchanan (M.), Landheer (D.). Effect of circuit oscillations on the DC current-voltage characteristics of double barrier resonant tunneling structures.Appl. Phys. Letters (1988),52, pp. 1398–1400.CrossRefGoogle Scholar
  12. [12]
    Davidson (L. A.). Optimum stability criterion for tunnel diodes shunted by resistance and capacitance.Proc. IEEE (1963),51, p. 1233.CrossRefGoogle Scholar
  13. [13]
    Lippens (D.), Mounaix (P.). Small signal impedance of GaAsAlGaAs resonant tunneling heterostructures at microwave frequency.Electronics Letters (1988),24, pp. 1180–1181.CrossRefGoogle Scholar
  14. [14]
    Lippens (D.), Vanbesien (O.). Experimental study of the microwave impedance of resonant tunneling diodes.Microwave and Optical Technology Letters (1989),2, pp. 233–240.CrossRefGoogle Scholar
  15. [15]
    Sollner (T. C. L. G.), Brown (E. R.), Goodhue (W. D.), Le (H. Q.). Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits.Appl. Phys. Letters (1987),50, pp. 332–334.CrossRefGoogle Scholar
  16. [16]
    Kesan (V. P.), Neikirk (D. P.), Blakey (P. A.), Streetman (B. G.), Linton (T. D.). The influence of transit-time effects on the optimum design and maximum oscillation frequency of quantum well oscillators.IEEE Trans. ED (1988),35, pp. 405–413.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Rachid Bouregba
    • 1
  • Olivier Vanbesien
    • 1
  • Loic Saint de Pol
    • 1
  • Didier Lippens
    • 1
  1. 1.Centre hyperfréquences et semiconducteursUniversité de Lille-Flandres-ArtoisF-59655 Villeneuve d’ Ascq Cedex

Personalised recommendations