Advertisement

Archives of Pharmacal Research

, 26:1109 | Cite as

Synthesis and antiviral evaluation of novel 3′- and 4′-doubly branched carbocyclic nucleosides as potential antiviral agents

  • Joon Hee Hong
Article

Abstract

A series of 3′- and 4′-branched carbocyclic nucleosides 25, 26, 27, 28, 29 and 30 were synthesized starting from simple acyclic ketone derivatives. The construction of the required quaternary carbon was made using a [3,3]-sigmatropic rearrangement. In addition, the installation of a methyl group in the 3′-position was accomplished using a Horner-Wadsworth-Emmons (HWE) reaction with triethyl 2-phosphonopropionate. Bis-vinyl was successfully cyclized using a Grubbs’ catalyst (II). Natural bases (adenine, cytosine, uracil) were efficiently coupled with the use of a Pd(0) catalyst.

Key words

Doubly branched carbocyclic nucleosides [3,3]-Sigmatropic rearrangement Antiviral agents 

References

  1. Agrofoglio, L., Suhas, E., Farese, A., Condom, R., Challand, S., Earl, R. A., and Guedj, R., Synthesis of carbocyclic nucleosides.Tetrahedron, 50, 10611–10670 (1994).CrossRefGoogle Scholar
  2. Borthwick, A. D. and Biggadike, K., Synthesis of chiral carbocyclic nucleosides.Tetrahedron, 48, 571–623 (1992).CrossRefGoogle Scholar
  3. Chu, C. K., Ma, T. W., Shanmuganathan, K., Wang, C.-G., Xiang, Y.-J., Pai, S. B., Yao, G.-Q., Sommadossi, J.-P., and Cheng, Y.-C., Use of 2′-fluoro-5-methyl-β-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis-B virus and epstein-barr-virus.Antimicrob. Agents Chemother., 39, 979–981 (1995).PubMedGoogle Scholar
  4. Chatis, P. A. and Crumpacker, C. S., Resistance of herpesvirus to antiviral drugs.Antimicrob. Agents Chemother., 36, 1589–1595 (1992).PubMedGoogle Scholar
  5. Crimmins, M. T., King, B. W., Zuercher, W. J., and Choy, A. L., An efficient, general asymmetric synthesis of carbocyclic nucleosides: application of an asymmetric aldol/ring-closing metathesis strategy.J. Org. Chem., 65, 8499–8500 (2000).PubMedCrossRefGoogle Scholar
  6. Daluge, S. M., Good, S. S., Faletto, M. B., Miller, W. H., StClair, M. H., Boone, L. R., Tisdale, M., Parry, N. R., Reardon, J. E., Dornsife, R. E., Averett, D. R., and Krenitsky, T. A., 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity.Antimicrob. Agents Chemother., 41, 1082–1093 (1997).PubMedGoogle Scholar
  7. Dienstag, J. L., Perrillo, R. P., Schiff, E. R. Bartholomew, M., Vicary, C., and Rubin, M., A preliminary trial of lamivudine for chronic hepatitis-B infection. New Engl. J. Med., 333, 1657–1661 (1995).PubMedCrossRefGoogle Scholar
  8. Furman, P. A. Fyfe, J. A., St. Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., Nusinoff-Lehrman, S., Bolognesi, D. P., Broder, S., Mitsuya, H., and Barry, D. W., Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase.Proc. Natl. Acad. Sci. USA, 83, 8333–8337 (1986).PubMedCrossRefGoogle Scholar
  9. Jeong, L. S., Lee, Y. A., Moon, H. Y., and Chun, M. W., Synthesis and antiviral activity of apio dideoxy nucleosides with azido or amino substituent.Nucleosides & Nucleotides, 17, 1479–1487 (1998).Google Scholar
  10. Herdewijn, P., De Clercq, E., Balzarini, J., and Vanderhaeghe, H. Synthesis and antiviral activity of the carbocyclic analogues of (E)-5-(2-halovinyl)-2′-deoxyuridines and (E)-5-(2-halovinyl)-2′-deoxycytidines.J. Med. Chem., 28, 550–555 (1985).PubMedCrossRefGoogle Scholar
  11. Hong, J.H., Gao, M. Y., and Chu, C. K., Synthesis of novel 3′-C-methyl-4′-thioapionucleosdie.via highly enantioselective elaboration of quaternary carbon [3,3]-sigmatropic rearrangement.Tetrahedron Lett., 40, 231–234 (1999).CrossRefGoogle Scholar
  12. Hong, J. H., Gao, M. Y., Choi, Y., Cheng, Y.-C., Schinazi, and Chu, C. K., Synthesis of novel 3′-C-methylapionucleosides: an asymmetric construction of a quaternary carbon by Claisen rearrangement.Carbohydrate Res., 328, 37–48 (2000).CrossRefGoogle Scholar
  13. Hong, J. H., Shim, M. J., Ro, B. O., and Ko, O. H., An efficient synthesis of novel carbocyclic nucleosides with use of ring- closing metathesis from D-lactose.J. Org. Chem., 67, 6387–6840 (2002).CrossRefGoogle Scholar
  14. Hong, J. H., Oh, C. H., and Cho, J. H., Stereocontrolled synthesis of novel 6′(α)-hydroxy carbovir analogues.Tetrahedron, 59, 6103–6108 (2003).CrossRefGoogle Scholar
  15. Kato, K., Suzuki, H., Tanaka, H., Miyasaka, T., Baba, M., Yamaguchi, K., and Akita, H., Stereoselective synthesis of 4-α-carbovir derivative based on an asymmetric synthesis of chemoenzymatic procedure.Chem. Pharm. Bull., 47, 1256–1264 (1999).Google Scholar
  16. Kitano, K. and Miura, S., Synthesis of 4-C-fluoromethylnucleosides as potential antineoplastic agents.Tetrahedron, 53, 13315–13322 (1997).CrossRefGoogle Scholar
  17. Levine, S., Hernandez, D., Yamanaka, G., Zhang, S., Rose, R., Weinheimer, S., and Colonno, R. J., Efficacies of entecavir against lamivudine-resistance hepatitis B virus replication and recombinant polymeras.in vitro.Antimicrob. Agents Chemother., 46, 2525–2532 (2002).PubMedCrossRefGoogle Scholar
  18. Lin, T.-S., Schinazi, R. F., and Prusoff, W. H., Potent and selectiv.in vitro activity of 3′-deoxythymidine-2′-ene-(3′-deoxy-2′,3′-dideoxydehydrothymidine) against human immunodeficiency virus.Biochem. Pharmacol., 36, 2713–2718 (1987).PubMedCrossRefGoogle Scholar
  19. Lin, T. S., Luo, M. Z., Liu, M. C., Pai, S. B., Dutschman, G. E., and Cheng, Y.-C., Synthesis and biological evaluation of 2′,3′-dideoxy-L-pyrimidine nucleosides as potential antiviral agents against human-immunodeficiency-virus (HIV) and hepatitis-B-virus (HBV).J. Med. Chem., 37, 798–803 (1994).PubMedCrossRefGoogle Scholar
  20. Martin, J. L., Brown, C. E., Mattews-Davis, N., and Reardon, J. E., Effects of antiviral nucleoside analogs on human DNA polymerase and mitochondrial DNA synthesis.Antimicrob. Agents Chemother., 38, 2743–2749 (1994).PubMedGoogle Scholar
  21. Palmer, J. L. and Abeles, R. H., The mechanism of action of S adenosylhomocysteinase.J. Biol. Chem., 254, 1217–1226 (1979).PubMedGoogle Scholar
  22. Parker, W. B. and Cheng, Y. C., Mitochondrial toxicity of antiviral nucleoside analogues.J. NIH Res., 6, 57–61 (1994).Google Scholar
  23. Shirasaka, T., Kavlick, M. F., Ueno, T., Gao, W. Y., Kojima, E., Alcaide, M. L., Chokekijchai, S., Roy, B. M., Arnol, E., Yarchoan, R., and Mitsuya, H., Emergence of humanimmunodeficiency-virus type-1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides.Proc. Natl. Acad. Sci. USA, 92, 2398–2402 (1995).PubMedCrossRefGoogle Scholar
  24. Schinazi, R. F., Chu, C. K., Peck, A., McMillan, A., Mathis, R. Cannon, D., Jeong, L. S., Beach, J. W., Choi, W. B., Yeola, S., and Liotta, D. C., Activities of the four optical isomers of 2′,3′-dideoxy-3′-thiacytidine (BCH-189) against human immunodeficiency virus type I in human lymphocytes.Antimicrob. Agents Chemother., 36, 672–676 (1992).PubMedGoogle Scholar
  25. Schinazi, R. F., McClure, H. M., Boudinot, R D., Xiang, Y.-J., and Chu, C. K., Development of (-)-(3-D-2,6-diaminopurines dioxolane as a potential antiviral agent.Antiviral Res., 23, suppl.81 (1994).Google Scholar
  26. Ueland, P. M., Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase.Pharmacol. Rev., 34, 223–253 (1982).PubMedGoogle Scholar
  27. Waga, T., Nishizaki, T., Miyakawa, J., Ohrui, H., and Meguro, H., Synthesis of 4′-C-methyl nucleosides.Biosci. Biotechnol. Biochem., 57, 1433–1438 (1993).PubMedCrossRefGoogle Scholar
  28. Yarchoan, R., Thomas, R. V., Allain, J.-R., McAtee, N., Dubinsky, R., Mitsuya, H., Lawley, T. J., Safai, B., Myers, C. E., Perno, C. F., Klecker, R. W., Wills, R. J., Rischl, M. A., McNeely, M. C., Pluda, J. M., Leuther, M., Collins, J. M., and Broder, S., The phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as single agent and alternating with zidovudine (AZT).Lancet, 1, 76–81 (1988).PubMedCrossRefGoogle Scholar
  29. Yarchoan, R., Mitsuya, H., Thomas, R. V., Pluda, J. M., Hartman, N. R., Perno, C. R., Marczyk, K. S., Allain, J.-P, Johns, D. G., and Broder, S.,In vivo activity against HIV and favorable toxicity profile of 2′,3′-dideoxyinosine.Science, 245, 412–415 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  1. 1.College of PharmacyChosun UniversityKwangjuKorea

Personalised recommendations