Advertisement

Annales Des Télécommunications

, Volume 57, Issue 1–2, pp 22–37 | Cite as

Waveguide devices based on active metallic photonic crystals

  • Olivier Vanbésien
  • Jerôme Danglot
  • Didier Lippens
Article

Abstract

We present a detailed analysis of waveguide devices patterned in two- and three-dimensional metallic photonic crystals. Tuning of guiding properties of electromagnetic waves is induced by a reflectivity modulation of waveguide walls by means of active electronic devices inserted in the 2D lattice. Such an active waveguide acts as a phase shifter in monomode operation as a consequence of the tunable capacitive coupling afforded by the 3D lattice. On this basis, various operating modes of multiport waveguide devices are investigated: (i) a switching operation in a T-shaped structure, (ii) highly directional lateral transfers in a multimode branch line coupler.

Key words

Periodic structure Active waveguide Photonic crystal Two dimensional system Three dimensional system Grid structure Electromagnetic property Directional coupler Microwave phase shifter Stub line 

Guides d’ondes à base de cristaux photoniques métalliques actifs

Résumé

Nous présentons une étude détaillée de structures guides d’ondes formées dans des cristaux photoniques métalliques bi- et tri-dimensionnels. L’accordabilité des propriétés de guidage des ondes électromagnétiques est obtenue par modulation de la réflectivité des murs des guides induite par l’insertion de composants actifs dans le réseau bidimensionnel. Un tel guide se comporte alors comme un déphaseur en régime monomode grâce au comportement capacitif modulable du réseau devenu tridimensionnel. Sur cette base, différents modes opératoires sont envisagés dans des structures multiports : (i) la commutation dans un guide en T (ii) le transfert latéral directif dans un coupleur simple branche en régime multimode.

Mots clés

Structure périodique Guide d’onde actif Cristal photonique Système bidimensionnel Système tridimensionnel Structure grille Propriété électromagnétique Coupleur directif Déphaseur hyperfréquences Ligne adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    “PhotonicBand Gap Materials” edited by Soukoulis (C.M.), Kluwer Academic Publishers (1996) and references therein.Google Scholar
  2. [2]
    Biswas (R.), Özbay (E.), Ho (K.M.), “Photonic band gaps with layer-by-layer double-etched structures”,J. Appl. Phys.,80, pp. 6749–6753 (1996).CrossRefGoogle Scholar
  3. [3]
    Cheng (C.C.), Scherer (A.), Arbet-Engels (V.), Yablonovitch (E.), “Lithographic band tuning in photonic band gap crystals”,J. Vac. Sci. Technol. B,14, pp. 4110–4114 (1996).CrossRefGoogle Scholar
  4. [4]
    Economou (E.N.), Sigalas (M.M.), “Classical wave propagation in periodic structures: cermet versus network topology”,Phys. Rev. B,48, pp. 13434–13438 (1993).CrossRefGoogle Scholar
  5. [5]
    Yablonovitch (E.), “Photonic crystals”,J. of Modern Optics,41, pp. 173–194 (1994).CrossRefGoogle Scholar
  6. [6]
    Hirayama (H.), Hamano (T.), Aoyagi (Y.), “Novel surface emitting laser diode using photonic band-gap crystal cavity”,Appl. Phys. Lett.,69, pp. 791–793 (1996).CrossRefGoogle Scholar
  7. [7]
    Yablonovitch (E.), “Inhibited spontaneous emission in solid-state physics and electronics”,Phys. Rev. Lett.,58, pp. 2059–2062 (1987).CrossRefGoogle Scholar
  8. [8]
    Rumsey (I.), Piket-May (M.), Kelly (P.K.), “Photonic bandgap structures used as filters in microstrip circuits”,IEEE Microwave and Guided Wave Letters,8, pp. 336–338 (1998).CrossRefGoogle Scholar
  9. [9]
    Radisic (V.), Qian (Y.), Coccioli (R.), Itoh (T.), “Novel 2D photonic bandgap structure for microstrip lines”,IEEE Microwave and Guided Wave Letters,8, pp. 69–71 (1998).CrossRefGoogle Scholar
  10. [10]
    Agi (K.), Brown (E.R.), McMahon (O.B.), Dill III(C.), Malloy (K.J.), “Design of ultrawideband photonic crystals for broadband antenna applications”,Electronics Letters,30, pp. 2166–2167 (1994).CrossRefGoogle Scholar
  11. [11]
    Sigalas (M.M.), Biswas (R.), Li (Q.), Crouch (D.), Leung (W.), Woodbury (R.J.), Lough (B.), Nielsen (S.), McCalmont (S.), Tuttle (G.), Ho (K.M.), “Dipole antennas on photonic band-gap crystals - Experiment and simulation”,Microwave and Optical Technology Letters,15, pp. 153–158 (1997).CrossRefGoogle Scholar
  12. [12]
    Ellis (T.J.), Rebeiz (G.M.), “MM-wave tapered slot antenna on micromachined photonic bandgap dielectrics”,IEEE MTT-S Digest, pp. 1157-1160 (1996).Google Scholar
  13. [13]
    Kesler (M.P.), Maloney (J.G.), Shirley (B.L.), Smith (G.S.), “Antenna design with the use of photonic band- gap materials as all-dielectric planar reflectors”,Microwave and Optical Technology Letters,11, pp. 169–174 (1996).CrossRefGoogle Scholar
  14. [14]
    Cheng (S.D.), Biswas (R.), Özbay (E.), McCalmont (S.), Tuttle (G.), Ho (K.M.), “Optimized dipole antennas on photonic band gap crystals”,Appl. Phys. Lett.,67, pp. 3399–3401 (1995).CrossRefGoogle Scholar
  15. [15]
    Poilasne (G.), Lenormand (J.), Pouligen (P.), Mahkjoubi (K.), Terret (C.), Gélin (P.), “Theoretical study of interactions between antennas and metallic photonic bandgap materials”,Microwave and Optical Technology Letters,15, pp. 384–389 (1997).CrossRefGoogle Scholar
  16. [16]
    Lim (K.Y.), Ripin (D.J.), Petrich (G.S.), Koldziejski (L.A.), Ippen (E.P.), Mondol (M.), Villeneuve (P.R.), Fan (S.), Joannopoulos (J.D.), ‘Photonic band-gap waveguide microcavities: monorails and air bridges’,J. Vac. Sci. Technol. B,17, pp. 1171–1174 (1999).CrossRefGoogle Scholar
  17. [17]
    Mekis (A.), Chen (J.C.), Kurland (I.), Fan (S.), Villeneuve (PR.), Joannopoulos (J.D.), “High transmission through sharp bends in photonic crystals waveguides”,Phys. Rev. Lett.,77, pp. 3787–3790 (1996).CrossRefGoogle Scholar
  18. [18]
    Sigalas (M.M.), Biswas (R.), Ho (K.M.), Soukoulis (C.M.), Turner (D.), Vasiliu (B.), Kothari (S.C.), Lin (S.), ‘Waveguide bends in three-dimensional layer by layer photonic bandgap materials’,Microwave and Optical Technology Utters,23, pp. 56–59 (1999).CrossRefGoogle Scholar
  19. [19]
    Temelkuran (B.), Özbay (E.), “Experimental demonstration of photonic crystal based waveguides”,Appl. Phys. Lett.,74, pp. 486–488 (1999).CrossRefGoogle Scholar
  20. [20]
    Danglot (J.), Vanbésien (O.), Lippens (D.), “A 4-port resonant switch patterned in a photonic crystal”,IEEE Microwave and Guided Wave Letters,9, pp. 274–276 (1999).CrossRefGoogle Scholar
  21. [21]
    Fan (S.), Villeneuve (P.R.), Joannopoulos (J.D.), Haus (H.A.), “Channel drop tunneling through localized states”,Phys. Rev. Lett.,80, pp. 960–963 (1998).CrossRefGoogle Scholar
  22. [22]
    Gadot (F.), Ammouche (A.), De Lustrac (A.), Chelnokov (A.), Bouillault (F.), Crozat (P.), Lourtioz (J.M.), “Photonic band gap materials for devices in the microwave domain”,IEEE Transaction on Magnetics,34, pp. 3028–3031 (1999).CrossRefGoogle Scholar
  23. [23]
    Fan (S.), Villeneuve (P.R.), Joannopoulos (J.D.), Khan (M.J.), Manolatou (C.), Haus (H.A.), “Theoretical analysis of channel drop tunneling processes”,Phys. Rev. B,59, pp. 15882–15892 (1999).CrossRefGoogle Scholar
  24. [24]
    Lourtioz (J.M.), Lustrac (A.), Gadot (F.), Chelnokov (A.), Lippens (D.), Danglot (J.), Vanbésien (O.), “Toward Controllable Photonic Crystals for Centimeter- and Millimeter-Wave Devices ”,IEEE/OSA Journal of Lightwave Technology,17, pp. 2025–2031 (1999).CrossRefGoogle Scholar
  25. [25]
    Danglot (J.), Vanbésien (O.), Lippens (D.), “Active waveguides patterned in mixed 2D-3D metallic photonic crystal”,Electronics Letters,35, pp. 475–477 (1999).CrossRefGoogle Scholar
  26. [26]
    Chang (T.K.), Langley (R.J.), Parker (E.A.), “Active frequency-selective surfaces”,IEE Proc.-Microw. Antennas Propag.,143, pp. 62–66 (1996).CrossRefGoogle Scholar
  27. [27]
    Lheurette (E.), Mélique (X.), Mounaix (P.), Mollot (F.), Vanbésien (O.), Lippens (D.), “Capacitance engineering for InP-based heterostructure barrier varactor”,IEEE Elec. Dev. Lett.,19, pp. 338–340 (1998).CrossRefGoogle Scholar
  28. [28]
    Duez (V.), Mélique (X.), Vanbésien (O.), Mounaix (P.), Mollot (F.), Lippens (D.), “High capacitance ratio with GaAs/InGaAs/AlAs heterostructure quantum well-barrier varactor”,Elec. Lett.,34, pp. 1860–1861 (1998).CrossRefGoogle Scholar
  29. [29]
    HP85180 High Frequency Structure Simulator version 5.0, Hewlett-Packard Company, Network measurements Division (1997).Google Scholar
  30. [30]
    Carbonell (J.), Vanbésien (O.), Lippens (D.), “Electric field patterns in finite two-dimensional wire photonic lattices”,Superlattices and Microstructures,22, pp. 597–605 (1997).CrossRefGoogle Scholar
  31. [31]
    Danglot (J.), Carbonell (J.), Fernandez (M.), Vanbésien (O.), Lippens (D.), “Modal analysis of guiding structures patterned in a metallic photonic crystal”,Appl. Phys. Lett.,73, pp. 2712–2714 (1998).CrossRefGoogle Scholar
  32. [32]
    Mekis (A.), Fan (S.), Joannopoulos (J.D.), “Bound states in photonic crystal waveguides and waveguide bends”,Phys. Rev. B,58, pp. 4809–4817 (1998).CrossRefGoogle Scholar
  33. [33]
    Burgnies (L.), Vanbésien (O.), Lippens (D.), “An analysis of wave patterns in multiport quantum waveguide structures”,Journal of Physics D: Applied Physics,32, pp. 706–712 (1999).CrossRefGoogle Scholar
  34. [34]
    Burgnies (L.), Vanbésien (O.), Lippens (D.), “Transient analysis of ballistic transport in stublike quantum waveguides”,Appl. Phys. Lett.,71, pp. 803–805 (1997).CrossRefGoogle Scholar
  35. [35]
    Vanbésien (O.), Lippens (D.), “Directional coupling in dual-branch electron-waveguide junctions”,Phys. Rev. B,52, pp. 5144–5153 (1995).CrossRefGoogle Scholar
  36. [36]
    Chang (C.C.), Yang (F.R.), Qian (Y.), Itoh (T.), “Recent advances in UC-PBG structures”,Proceedings of the 30 th European Microwave Conference, pp. 96-99 (2000).Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Olivier Vanbésien
    • 1
  • Jerôme Danglot
    • 1
  • Didier Lippens
    • 1
  1. 1.Institut d’Electronique et de Microélectronique du Nord (IEMN-UMR CNRS 8520), Département Hyperfréquences et SemiconducteursUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations