Advertisement

Archives of Pharmacal Research

, Volume 30, Issue 8, pp 945–949 | Cite as

Improved production of caffeic acid derivatives in suspension cultures ofEchinacea purpurea by medium replenishment strategy

  • Chun-Hua Wu
  • Hosakatte Niranjana Murthy
  • Eun-Joo Hahn
  • Kee-Yoeup Paek
Article Drug discovery

Abstract

The aim of this study was to produce caffeic acid derivatives from adventitious root cultures ofEchinacea purpurea, which are of high pharmaceutical value. The effects of both media optimization and replenishment strategies were adopted to achieve improved production ofE. purpurea adventitious roots and caffeic acid derivatives. Of the different media strengths (0.25 MS, 0.5 MS, 0.75 MS and 1 MS) tested for the culturing of adventitious roots in 5 L bioreactors, 0.5 MS medium was found to be most suitable for the growth of adventitious roots. The optima accumulation of biomass (73.6 g L-1 FW and 10.03 g L-1 DW), phenolics (61.14 mg g-1 DW) and flavonoids (38.30 mg g-1 DW) were achieved in this medium. Furthermore, fed batch cultivations (media replenishment with 0.25 MS, 0.5 MS, 0.75 MS and 1 MS at the end of 2nd and 3rd weeks) to further enhance the production of adventitious root biomass and metabolites were also attempted. High adventitious root biomasses (83.1 g L-1 FW and 15.30 g L-1 DW) were achieved with feeding of the 0.5 MS medium at the end of 2nd week. This led to slight decreases in the total production of phenolics and flavonoids; however, this feeding was responsible for increases in the accumulation of caftaric acid (5.76 mg g-1 DW) and cichoric acid (26.12 mg g-1 DW).

Key words

Adventitious root cultures Caffeic acid derivatives Caftaric acid Chlorogenic acid Cichoric acid Echinacea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Bauer, R. and Wagner, H., Echinacea species as potential immunostimulatory drugs.Econ. Medic. Plant Res., 5, 253–321 (1991).Google Scholar
  2. Barrett, B., Medicinal properties of Echinacea: A critical review.Phytomedicine, 10, 66–86 (2003).PubMedCrossRefGoogle Scholar
  3. Cervellati, R., Renzulli, C., Guerra, M. C., and Speroni E., Evaluation of antioxidant activity of some natural polyphenolic compounds using the Birggs-Rauscher reaction method.J. Agric. Food Chem., 50, 7506–7509 (2002).CrossRefGoogle Scholar
  4. Dewanto, V., Wu, X., Adorn, K. K., and Liu, R. H., Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity.J Agric. Food Chem., 50, 3010–3014 (2002).PubMedCrossRefGoogle Scholar
  5. Fett-Neto, A. G., Melanson, S. J., Sakata, K., and DiCosmo, R., Improved growth and taxol yield in developing calli ofTaxus cuspidata by medium composition modification.Bio/ Technology, 11, 731–734 (1993).PubMedGoogle Scholar
  6. Folin, O. and Ciocalteu, V, On tyrosine and tryptophane determination in proteins.J. Bio. Chem., 27, 627–650 (1927).Google Scholar
  7. Kim, Y. S., Hahn, E. J., Murthy, H. N., and Paek, K. Y., Adventitious root growth and ginsenoside accumulation inPanax ginseng cultures as affected by methyl jasmonate.Biotechnol. Lett., 26, 1619–1622 (2004).PubMedCrossRefGoogle Scholar
  8. King, P. J., Ma, M., Miao, W., Jia, Q., McDougall, B. R., Reinecke, M. G., Cornell, C., Kuan, J., Kim, T. R., and Robinoson, E. W., Structure-activity relationships: Analogues of the dicaffeoyl-quinic and dicaffeoytartaric acids as potent inhibitors of human immunodeficiency virus type-1 integrase and replication.J. Med. Chem., 43, 497–509 (1999).CrossRefGoogle Scholar
  9. Lin, Z., Neamati, N., Zhao, H., Kiryu, Y., Turpin, J. A., Aberham, C., Strebel, K., Kohn, K., Witvrouw, M., Pannecouque, C., Debyser, Z., Clercq, E. D., Rice, W. G., Pommier, Y., and Burke, T. R., Chicoric acid analogues as HIV-1 integrase inhibitors.J. Med. Chem., 42, 1401–1414 (1999).PubMedCrossRefGoogle Scholar
  10. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol. Plant., 15, 473–497 (1962).CrossRefGoogle Scholar
  11. Panda, A. K., Mishra, S., and Bisaria, V. S., Alkoloid production by plant cell suspension ofHolarrhena antidysenterica:l. Effect of major nutrients.Biotechnol. Bioeng., 59, 1043–1051 (1992).CrossRefGoogle Scholar
  12. Park, S. Y., Ahn, J. K., Lee, W. Y., Murthy, H. N., and Paek, K. Y., Mass production ofEleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants.Plant Sci., 168, 1221–1225 (2005).CrossRefGoogle Scholar
  13. Pellati, F., Benvenuti, S., Magro, L., Melegari, M., and Soragni, F., Analysis of phenolic compounds and radical scavenging activity ofEchinacea spp.J. Pharm. Biomed. Anal., 35, 289–301 (2004).PubMedCrossRefGoogle Scholar
  14. Sakanaka, S., Tachibana, Y., and Okada, Y., Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha).Food Chem., 89, 569–575 (2005).CrossRefGoogle Scholar
  15. Shohael, A. M., Chakrabarty, D., Yu, K. W., Hahn, E. J., and Paek, K. Y., Application of bioreactor system for large-scale production ofEleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutheorsides.J. Biotehnol., 120, 228–236 (2005).CrossRefGoogle Scholar
  16. Speroni, E., Govoni, P., Guizzardi, S., Renzulli, C., and Guerra, M. C., Anti-inflammatory and cicatrizing activity ofEchinacea pallida Nutt. root extract.J. Ethanopharmacol., 79, 265–272 (2002).CrossRefGoogle Scholar
  17. Srinivasan, V. and Ryu, D. D. Y., Improvement of shikonin productivity inLithospenvum erythromizon cell cultures by altering carbon and nitrogen feeding strategy.Biotechnol. Bioeng., 42, 793–799 (1993).PubMedCrossRefGoogle Scholar
  18. Thanh, N. T., Murthy, H. N., Hahn, E. J., and Paek, K. Y., Methyl jasomonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures ofPanax ginseng in 5-I balloon type bubble reactors.Appl. Microbiol. Biotechnol., 67, 197–201 (2005).PubMedCrossRefGoogle Scholar
  19. Wang, H. Q., Yu, J. T., and Zhong, J. J., Significant improvement of taxane production in suspension cultures ofTaxus chinensis by sucrose feeding strategy.Process Biochem., 35, 479–483 (1999).CrossRefGoogle Scholar
  20. Wu, J. Y., Wong, K., Ho, K. P., and Zhou, L. G., Enhancement of saponin production inPanax ginseng cell cultures by osmotic stress an nutrient feeding.Enzyme Microb. Tech., 36, 133–138, 2005.CrossRefGoogle Scholar
  21. Yamamoto, O. and Kamura K., Production of saikosaponin in cultured roots ofBupleumm falcatum L.Plant Tissue Cult. Biotechnol., 3, 138–147 (1997).Google Scholar
  22. Yu, K. W., Hahn, E. J., and Paek, K. Y., Production of ginseng adventitious roots using bioreactors.Korean J. Plant Tissue Cult., 27, 309–315 (2000).Google Scholar
  23. Yu, K. W., Production of useful secondary metabolites through bioreactor culture of Korean ginseng (Panax ginseng C. A. Meyer). Ph. D. thesis, Chungbuk National University, Cheongju, South Korea (2000).Google Scholar
  24. Zhishen, J., Mengcheng, T., and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on Superoxide radicals.Food Chem., 64, 555–559 (1999).CrossRefGoogle Scholar
  25. Zhang, Y. H. and Zhong, J. J., Hyperproduction of ginseng saponin and polysaccharide by high density cultivation ofPanax notoginseng cells.Enzyme Microb. Biochem., 21, 59–63 (1997).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Chun-Hua Wu
    • 1
  • Hosakatte Niranjana Murthy
    • 1
    • 2
  • Eun-Joo Hahn
    • 1
  • Kee-Yoeup Paek
    • 1
  1. 1.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuKorea
  2. 2.Department of BotanyKarnatak UniversityDharwadIndia

Personalised recommendations