Efficiency of two enzymes immobilized to the same surface and acting in sequence

II. Relative efficiencies of a two-enzyme sequential reacti in either the soluble or the immobilized state
  • Stanley Y. Shimizu
  • Howard M. Lenhoff


Phosphoglucomutase and glucose-6-phosphate dehydrogenase were immobilized to striazine trichloride activated cellulose to determine if perparations having two enzymes immobilized to the same surface could carry out the sequential reaction, glucose-1-P to glucose-6-P, glucose-6-P to 6-phosphogluconate more efficiently than preparations in which the enzymes were immobilized to separate particles or free in solution. The results of experiments examining the effect of dilution on the sequential rate indicate greater efficiency by enzymes immobilized to the same surface.


Enzyme Dehydrogenase Activity Immobilize Enzyme Dehy Frit Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lynen, F (1967) Biochem. J. 101: 381–400.Google Scholar
  2. 2.
    Welch, R. L andGaertner, F. H (1975) Proc. Natl. Acad. Sci. U.S.A. 72:4218–4222.CrossRefGoogle Scholar
  3. 3.
    Matchett, W. H (1974) J. Biol. Chem. 249: 4041–4049.Google Scholar
  4. 4.
    Lue, P. F andKaplan, J. G (1970) Biochim. Biophys. Acta 220: 365–372.Google Scholar
  5. 5.
    Gaertner, F. H Ericson, M. C andDeMoss, J. A (1970) J. Biol. Chem. 245:585–600.Google Scholar
  6. 6.
    Keilin, D andHartee, E. F (1940), Roy. Soc. London, Proc. 129: 277–306.CrossRefGoogle Scholar
  7. 7.
    Weiss, R. L andDavis, R. H (1973) J. Biol. Chem. 248: 5403–5408.Google Scholar
  8. 8.
    Zalokar, M (1960) Exp. Cell Res. 19: 114.CrossRefGoogle Scholar
  9. 9.
    Lloyd-Davies, K. A Michell, R. H andColeman, R (1972) Biochem. J. 127: 357–368.Google Scholar
  10. 10.
    Katchalski, E Silman, I andGoldman, R (1971)In Methods in Enzymology, Vol. 34,Nord, F. F (ed.), Interscience Publishers, New York, pp. 445–536.Google Scholar
  11. 11.
    Davis, R. H (1967)In Organizational BiosynthesisVogel, H. J Lampen, J. O andBryson, V (eds.), Academic Press, New York, pp. 303–322.Google Scholar
  12. 12.
    Davis, R. H (1972) Science 24: 835–840.CrossRefGoogle Scholar
  13. 13.
    Shimizu, S. Y andLenhoff, H. M (1979) J. Solid Phase Biochem. 4: 75–94.Google Scholar
  14. 14.
    Kiritani, K Narise, S Berquist, A andWagner, R. P (1965) Biochim. Biophys. Acta 100: 432–443.Google Scholar
  15. 15.
    Wagner, R. P Bergquist, A Brotzman, B andEakin, E. A (1967)In Organizational Biosynthesis,Vogel, J. H Lampen, J. O andBryson, U (eds.), Academic Press, New York, pp. 267–293.Google Scholar
  16. 16.
    Goldman, R Goldstein, L andKatchalski, E (1971)In Biochemical Aspects of Reactions on Solid Supports,Stark, G. R (ed.), Academic Press, New York, pp. 1–78.Google Scholar
  17. 17.
    Nernst, W. A (1904) Z. Phys. Chem. 47: 52.Google Scholar
  18. 18.
    Dorfner, K (1972)In Ion Exchangers-Properties and Applications,Coers, A. F (ed.), Science Publications, Inc., Ann Arbor, MI, pp. 250–255.Google Scholar
  19. 19.
    Boyd, G. E. , Admonson, A. W., and Meyer, Jr., L. S. (1947) J. Am. Chem. Soc, 2836–2848.Google Scholar
  20. 20.
    Ginzburg, B. A andKatchalski, A (1963) J. Gen Physiol. 47: 403–418.CrossRefGoogle Scholar
  21. 21.
    Helfferich, F (1962) Ion Exchange, McGraw-Hill, New York, pp 253–258.Google Scholar
  22. 22.
    Thiele, E.W (1939) Ind. Eng. Chem. 31: 916–920.CrossRefGoogle Scholar
  23. 23.
    Reichenberg, D (1953) J. Am. Chem. Soc. 75: 589.CrossRefGoogle Scholar
  24. 24.
    Goldman, R andKatchalski, E (1971) J. Theor. Biol. 32: 243–257.CrossRefGoogle Scholar
  25. 25.
    Bouin, J. C Atallah, M. T andHultin, H. O (1976) Biotech. Bioeng. 18: 179–187.CrossRefGoogle Scholar
  26. 27.
    Campbell, J andChang, T. M. S (1975) Biochim. Biophys. Acta. 397:101–109.Google Scholar
  27. 28.
    Hervagault, J. F Joly, G andThomas, D (1975) Eur. J. Biochem. 51, 19–23.CrossRefGoogle Scholar
  28. 29.
    Ho, S. P andKostin, M. D (1974) J. Chem. Phys. 61: 918–920.CrossRefGoogle Scholar
  29. 30.
    Hultin, H. O (1974) J. Food Sci. 39: 652.CrossRefGoogle Scholar
  30. 31.
    Martensson, K (1974) Biotech. Bioeng. 16: 567–577.ba]CrossRefGoogle Scholar
  31. 32.
    Martensson, K (1974) Biotech. Bioeng. 16, 579–591.CrossRefGoogle Scholar
  32. 33.
    Markey, P. E Greenfield, P. F andKittreu, J. R (1975) Biotech. Bioeng. 17:285–289.CrossRefGoogle Scholar
  33. 34.
    Mattiasson, B andMosbach, K (1971) Biochim. Biophys. Acta 235: 253–257.Google Scholar
  34. 35.
    Mosbach, K andMattiasson, B (1970) Acta Chem. Scand. 24: 2093–2100.CrossRefGoogle Scholar
  35. 36.
    Srere, P. A andMosbach, K (1974) Ann. Rev. Micro. 28: 61–83.CrossRefGoogle Scholar
  36. 37.
    Shimizu, S. Y andLenhoff, H. M (1978)In Enzyme Engineering, Vol. 3Pye, E. K andWeetal, H. H (eds.), Plenum Press, New York, pp 155–161.Google Scholar
  37. 38.
    Lenhoff, H. M Shimizu, S. Y andSmith, N. L (1977),In Biomedical Applications of Immobilized Enzymes and Proteins, Vol. 2,Chang, T. M. S (ed.), Plenum Press, New York, pp. 271–279.Google Scholar
  38. 39.
    Shimizu, S. Y andLenhoff, H. M (1979) J. Solid Phase Biochem. 4:109–122.Google Scholar

Copyright information

© Humana Press Inc. 1979

Authors and Affiliations

  • Stanley Y. Shimizu
    • 1
  • Howard M. Lenhoff
    • 1
  1. 1.Department of Developmental and Cell Biology and Molecular Biology and BiochemistryUniversity of CaliforniaIrvine

Personalised recommendations