Journal of Solid Phase Biochemistry

, Volume 3, Issue 3, pp 161–174 | Cite as

Preparation of immobilized tannins for protein adsorption

  • Taizo Watanabe
  • Yuhsi Matuo
  • Takao Mori
  • Ryujiro Sano
  • Tetsuya Tosa
  • Ichiro Chibata


Preparation and adsorption specificity of tannins immobilized by covalent binding on water-insoluble matrices were investigated. Immobilized tannins were prepared by condensing cyanogen bromide activated tannins with aminohexyl derivatives of several kinds of matrices. The most suitable matrix for the immobilization of tannin was alkali-treated cellulose powder. The concentration of sodium hydroxide solution for alkali treatment influenced the adsorption capacity of immobilized tannin for a protein, but temperature and time for alkali treatment did not. Immobilized tannins having spacers of long chain length exhibited high adsorption capacity for a protein. Chinese gallotannin was the most favorable ligand for protein adsorption. The immobilization of tannin on aminohexyl matrices was also possible by using epichlorohydrin instead of cyanogen bromide. The maximum adsorption capacity of the immobilized tannin for a protein was about 50 mg/ml of the absorbent. Immobilized tannin adsorbed proteins specifically but did not absorb low molecular weight compounds.


Adsorption Capacity Tannin High Adsorption Capacity Alkali Treatment Epichlorohydrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grant, R. A. (1974) Process Biochemistry 9: 11–14.Google Scholar
  2. 2.
    Messing, R. A. (1974) Brewers Digest 46: 60–63.Google Scholar
  3. 3.
    Atkinson, A. (1973) Process Biochemistry 8: 9–12.Google Scholar
  4. 4.
    Baum, G., andLynn, M. (1973) Process Biochemistry 10: 14–17.Google Scholar
  5. 5.
    Tosa, T., Sano, R., Yamamoto, K., Nakamura, M., andChibata I. (1972) Biochemistry 11: 217–222.CrossRefGoogle Scholar
  6. 6.
    Cuatrecasas, P. (1970) J. Biol. Chem. (1970) 245: 3059–3065Google Scholar
  7. 7.
    Porath, J., andFornstedt N. (1970) J. Chromatogr. 51: 479–489.CrossRefGoogle Scholar
  8. 8.
    Inman, J. K., andDintzis, H. M. (1969) Biochemistry 8: 4074–4082.CrossRefGoogle Scholar
  9. 9.
    Hoare, D. G., andKoshland, D. E. (1966) J. Amer. Chem. Soc. 88: 2057–2058.CrossRefGoogle Scholar
  10. 10.
    Hoare, D. G., andKoshland, D. E. (1967) J. Biol. Chem. 242: 2447–2453.Google Scholar
  11. 11.
    Masaharu, K. (1949) Yakugaka Kenkyu 21: 129–132.Google Scholar
  12. 12.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. (1951) J. Biol. Chem. 193: 265–275.Google Scholar
  13. 13.
    Cadavid, N. G., andPaladini, A. C. (1964) Anal. Biochem. 9: 170–174.CrossRefGoogle Scholar
  14. 14.
    Somogi, M. (1945) J. Biol. Chem. 160: 61–68.Google Scholar
  15. 15.
    Bock, R. M., andAlberty, R. A. (1953) J. Amer. Chem. Soc. 75: 1921–1925.CrossRefGoogle Scholar
  16. 16.
    Goodman, A. E., andStark, J. B. (1957) Anal. Chem. 29: 283–287.CrossRefGoogle Scholar
  17. 17.
    Kennedy, J. F. (1974) Adv. Carbohydr. Chem. Biochem. 29: 305–308.CrossRefGoogle Scholar
  18. 18.
    Wilchek, M., andMiron, T. (1976) Biochem. Biophys. Res. Commun. 72: 108–113.CrossRefGoogle Scholar
  19. 19.
    Watanabe, T.,Fujimura, M.,Mori, T.,Tosa, T., andChibata, I. (in press) J. Appl. Biochem.Google Scholar
  20. 20.
    Watanabe, T., Mori, T., Tosa, T., andChibata, I. (1979) Biotech. Bioeng. 21: 477–486.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1979

Authors and Affiliations

  • Taizo Watanabe
    • 1
  • Yuhsi Matuo
    • 1
  • Takao Mori
    • 1
  • Ryujiro Sano
    • 1
  • Tetsuya Tosa
    • 1
  • Ichiro Chibata
    • 1
  1. 1.Department of BiochemistryResearch Laboratory of Applied Biochemistry Tanabe Seiyaku Co., Ltd.OsakaJapan

Personalised recommendations