Journal of Solid Phase Biochemistry

, Volume 3, Issue 2, pp 95–105 | Cite as

Stabilization of glucose oxidase fromPenicillium vitale entrapped in high-concentration gels

  • J. J. Kulys
  • B. S. Kurtinaitiene
  • V. F. Akulova


Glucose ixidase fromPenicillium vitale was immobilized in a 2-hydroxyethyl methacrylate (HEMA) gel containing 0.3 to 2% of methacrylic acid (MAA) or MAA neutralized by allylamine (AA). Depending on the MAA quantity of MAA in the gel, the thermal irreversible inactivation(k in) constants of the immobilized enzymes sharply decrease at gel concentrations higher than 29 to 50% at pH 5.8. A 220- to 250-fold decrease ofk in was observed in 60 to 80% gel. The inactivation rate of enzyme in HEMA gel also decreases considerably under the action of urea. Over the range of pH 5.0 to 9.0 thek in of the native enzyme depends on pH by a degree of 2.1, and of the immobilized enzyme, 0.3 to 0.55. Over the pH range of 5.2 to 5.7,k in of the native and immobilized enzymes are approximate, whereas at pH 8 and over the difference betweenk in values exceeds four orders of magnitude. The activity dependence of the immobilized enzyme on pH is shifted two units to the alkaline region. This shift depends on the ionic strength of the solution. This dependence is best reflected in the high gel concentrations. A mechanism of enzymes stabilization in the concentrated HEMA gel is discussed.


Immobilize Enzyme Glucose Oxidase HEMA Methacrylic Acid Native Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabel, D. (1973) J. Biochem. 33: 348.Google Scholar
  2. 2.
    Martinek, K., Klibanov, A. M., Tchernysheva, A. V., andBerezin, I. V. (1975) Dokl. Akad. Nauk SSSR 223: 233.Google Scholar
  3. 3.
    Martinek, K., Gol’dmakher, V. S., Klibanov, A. M., Torchilin, V. P., Smirnov, V. N., Chazov, E. I., andBerezin, I. V. (1976) Dokl. Akad. Nauk SSSR 228: 1468.Google Scholar
  4. 4.
    Kulys, J. J., andKurtinaitiene, B. S.: (1978) Biokhimiya 43: 453.Google Scholar
  5. 5.
    Akulova, V. F., Vaitkevicius, R. K., Kurtinaitiene, B. S., andKulys, J. J. (1978) J. Prikl. Biokhim. Mikrobiol. 14: 378.Google Scholar
  6. 6.
    Murayama, M., andAbe, K. (1970) Ger. Often. 2,027,444. (1971) Chem. Abstracts 74: 63938k.Google Scholar
  7. 7.
    Hinberg, I., Kapoulas, A., Korus, R., andO’Driscoll, K. (1974) Biotech. Bioeng. 16: 159.CrossRefGoogle Scholar
  8. 8.
    Goldman, R., Goldstein, L., andKatchalski, E. (1971) Water Insoluble Enzyme Derivatives and Artificial Enzyme Membranes; 1–78,In Biochemical Aspects of Reaction on Solid Support,Stark, G. R. (ed), Academic Press, New York/London.Google Scholar
  9. 9.
    Bates, R. G. (1954) Analyt. Chem. 26: 871.CrossRefGoogle Scholar
  10. 10.
    Abalikhina, T. A., Morozkin, A. D., Bogdanov, V. P., andKaverzneva, E. D. (1971) Biokhimiya 36: 191.Google Scholar
  11. 11.
    Morozkin, A. D.,Abalikhina, T. A.,Bogdanov, V. P., andKaverzneva, E. D. (1972) Izv. Akad. Nauk SSSR, Ser. Chim. 1437.Google Scholar
  12. 12.
    Bogdanov, V. P., Abalikhina, T. A., Tchukhrova, A. I., Morozkin, A. D., Degtyar, R. G., andKaverzneva, E. D. (1974) Biokhimiya 39: 771.Google Scholar

Copyright information

© Humana Press Inc. 1979

Authors and Affiliations

  • J. J. Kulys
    • 1
  • B. S. Kurtinaitiene
    • 1
  • V. F. Akulova
    • 1
  1. 1.Institute of Biochemistry, Academy of Sciences Lithuanian SSRVilniusSSR

Personalised recommendations