Cell Biophysics

, Volume 16, Issue 3, pp 105–126 | Cite as

Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts

  • Homa Darmani
  • W. Terence Coakley
  • A. Choun Hann
  • Anthony Brain


The time dependence of agglutination and cell-cell contact spreading in human erythrocytes exposed to wheat germ agglutinin (WGA) was characterized by light and electron microscopy. Cells (3×107/mL) had a threshold lectin concentration in the range of 0.6–2.0 μg/mL for initial cell contact. Spreading was essentially completed within 60 and 2 min in undisturbed and gently agitated suspensions, respectively. The cells in large WGA agglutinates retained features of their initial disk form in contrast to the convex outlines of polycation or polyethylene glycol-induced agglutinates.

Spreading of contact area was accompanied by development of a pattern of discrete contact regions separated by a distance of the order of 1 μm. Freeze fracture electron microscopy and studies with ferritinlabeled WGA showed no significant aggregation of intramembrane particles or specific lectin receptors under conditions when contact spreading occurred. It is argued that flow stress effects on cells in suspended agglutinates give rise to a situation where opposite membranes, at the leading edge of cell contact, are separated by a thin aqueous layer. When this intercellular water layer exceeds a critical length, it becomes unstable. The layer breaks up by surface wave development to form an array of intracellular water spaces. Formation of the aqueous spaces causes opposite membrane regions to move synchronously toward each other. Lectin molecules crosslink the wave crests to give spatially periodic contact points.

Index Entries

Wheat germ agglutinin erythrocyte membrane cell spreading spatially periodic contact interfacial instability lectin cell adhesion cell agglutination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lovrien, R. E. and Anderson, R. A. (1980),J. Cell Biol. 85, 534–548.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith, L. and Hochmuth, R. M. (1982),J. Cell Biol. 94, 7–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Jan, K. M. (1979),Biorheology 16, 137–148.PubMedGoogle Scholar
  4. 4.
    Katchalsky, A., Danon, D., Nevo, A., and de Vries, A. (1959),Biochirn. Biophys. Acta 33, 120–138.CrossRefGoogle Scholar
  5. 5.
    Coakley, W. T., Hewison, L. A. and Tilley, D. (1985),Eur. Biophys. J. 13, 123–130.PubMedCrossRefGoogle Scholar
  6. 6.
    Knutton, S. (1979),J. Cell Sci. 36, 61–72.PubMedGoogle Scholar
  7. 7.
    Tilley, D., Coakley, W. T., Gould, R. K., Payne, S. E. and Hewison, L. A. (1987),Eur. Biophys. J. 14, 499–507.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans, E. A. and Leung, A. J. (1984),J. Cell Biol. 98, 1201–1208.PubMedCrossRefGoogle Scholar
  9. 9.
    Hewison, L. A., Coakley, W. T. and Meyer, H. W. (1988),Cell Biophys. 13, 151–157.PubMedGoogle Scholar
  10. 10.
    Pinto da Silva, P. and Torrisi, M. R. (1982),J. Cell Biol. 93, 463–469.CrossRefGoogle Scholar
  11. 11.
    Adair, W. L. and Kornfeld, S. (1974),J. Biol Chem. 249, 4696–4704.Google Scholar
  12. 12.
    Goldsmith, H. L. (1970),Thromobosis et Diathesis Haemorrhagia (Suppl. 40), 91–110.Google Scholar
  13. 13.
    Grieg, R. G. and Brooks, D. E. (1979),Nature 282, 738–739.CrossRefGoogle Scholar
  14. 14.
    van Oss, C. J. and Coakley, W. T. (1988),Cell Biophysics 13, 141–150.PubMedGoogle Scholar
  15. 15.
    Jan, K. M. and Chien, S. (1973),J. Gen. Physiol. 61, 638–654.PubMedCrossRefGoogle Scholar
  16. 16.
    Coakley, W. T., Darmani, H., Irwin, S., Robson, K. and Gallez, D. (1989),Studia Biophysica,127, 69–74.Google Scholar
  17. 17.
    Gallez, D. and Coakley, W. T. (1986),Prog. Biophys. Mol. Biol. 48, 155–199.PubMedCrossRefGoogle Scholar
  18. 18.
    Fowler, V. M. (1986),Nature 322, 777, 778.PubMedCrossRefGoogle Scholar
  19. 19.
    Gahmberg, C. G., Tauren, G., Virtanen, I. and Wartiovaara, J. (1978),J. Supramol. Struc. 8, 337–347.CrossRefGoogle Scholar
  20. 20.
    Wise, G. E., Oakford, L. X. and Cantu-Crouch, D. B. (1987),Cell Tissue Res. 248, 267–273.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicolson, G. L. and Painter, R. G. (1973),J. Cell Biol. 59, 395–406.PubMedCrossRefGoogle Scholar
  22. 22.
    Pinto da Silva (1972),J. Cell Biol. 53, 777–787.CrossRefGoogle Scholar
  23. 23.
    Elgsaeter, A. and Branton, D. (1974),J. Cell Biol. 63, 1018–1030.PubMedCrossRefGoogle Scholar
  24. 24.
    Bretscher, M. S. and Raff, M. C. (1975),Nature 258, 43–49.PubMedCrossRefGoogle Scholar
  25. 25.
    Wise, G. E., Shienvold, F. L. and Rubin, R. W. (1978),J. Cell Sci. 30, 63–76.PubMedGoogle Scholar
  26. 26.
    Tan, S. S. and Morris-Kay, G. M. (1986),J. Embryol. Exp. Morphol. 98, 21–58.PubMedGoogle Scholar
  27. 27.
    Johnson, L. V. (1986),Developmental Biol. 113, 1–9.CrossRefGoogle Scholar
  28. 28.
    Russel, L., Peterson, R. and Freud, M. (1979),J. Exp. Zool. 208, 41–56.CrossRefGoogle Scholar
  29. 29.
    Rotrosen, D., Edwards, J. E., Jr., Gibson, T. R., Moore, J. C., Cohen, A. H., and Green, I. (1985),J. Infect. Dis. 152, 1264–1274.PubMedGoogle Scholar
  30. 30.
    King, C. A., Cooper, L. and Preston, T. M. (1983),Protoplasma 118, 10–18.CrossRefGoogle Scholar
  31. 31.
    Izzard, C. S. and Lochner, L. P. (1976),J. Cell Sci. 21, 129–151.PubMedGoogle Scholar
  32. 32.
    Baranowski, Z., Kuznicki, I., Opas, M., and Nencki, M. (1977),5th Int. Congress of Protozoology, New York, p. 474.Google Scholar
  33. 33.
    Vasiliev, J. M. (1985),Biophys. Acta 780, 21–65.Google Scholar
  34. 34.
    Fricke, K. and Sackmann, E. (1984),Biochim. Biophys. Acta 803, 145–152.PubMedCrossRefGoogle Scholar
  35. 35.
    Izzard, C. S. and Lochner, L. P. (1980),J. Cell Sci. 42, 81–116.PubMedGoogle Scholar
  36. 36.
    Preston, T. M. and King, C. A. (1978),J. Cell Sci. 34, 145–158.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Homa Darmani
    • 1
  • W. Terence Coakley
    • 1
  • A. Choun Hann
    • 2
  • Anthony Brain
    • 3
  1. 1.School of Pure and Applied BiologyUniversity of Wales, College of CardiffCardiffUK
  2. 2.Electron Microscopy UnitUniversity of Wales, College of CardiffUK
  3. 3.Electron Microscopy UnitKings College LondonLondon

Personalised recommendations