Advertisement

Journal of Solid-Phase Biochemistry

, Volume 2, Issue 4, pp 305–314 | Cite as

Applications of enzyme technology in biosaline environments

  • K. Venkatasubramanian
Article
  • 28 Downloads

Abstract

Microorganisms from biosaline environments represent unique sources for enzyme systems since these environments experience high temperature and salinity. Potential applications of microbes grown under biosaline conditions (whole microbial cells or isolated enzymes) as biocatalysts for food, fiber, energy, and fine chemicals production are discussed. Use of such organisms and enzymes in the immobilized form is emphasized.

Keywords

Algal Cell Nitrite Reductase Enzyme Technology Invert Sugar Ethanol Acetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coughlin, R. W. (1977) Enzyme technology in bio-saline environments. Position paper prepared for the Workshop on Bio-Saline Research.Google Scholar
  2. 2.
    Vieth, W. R., andVenkatasubramanian, K. (1976) Methods Enzymol. 44: 768.CrossRefGoogle Scholar
  3. 3.
    Abbott, B. J. (1977)In: Annual Reports on Fermentation Processes,Perlman, D. ed., American Chemical Society, Washington, D.C.Google Scholar
  4. 4.
    Vieth, W. R., andVenkatasubramanian, K. (1974) Chemtech. 4: 47, 268, 309.Google Scholar
  5. 5.
    Vieth, W. R., andVenkatasubramanian, K. (1976) Methods Enzymol. 44: 243.CrossRefGoogle Scholar
  6. 6.
    Venkatasubramanian, K., andVieth, W. R. (1977) Proceedings of the Fourth International Enzyme Engineering Conference, Bad Neuenahr, Germany, September.Google Scholar
  7. 7.
    Venkatasubramanian, K., Vieth, W. R., andConstantinides, A. (1977)In: Enzyme Engineering, Vol. 3,Weetall, H., andPye, E. K., eds., Plenum Press, New York, pp. 29-42.Google Scholar
  8. 8.
    Lien, S., andSan Pietro, A. (1976) An Inquiry into the Biophotolysis of Water to Produce Hydrogen, Indiana University Press, Bloomington, Ind.Google Scholar
  9. 9.
    Benemann, T., Berenson, N., Kaplan, O., andKamen, M. (1973) Proc. Natl. Acad. Sci. U.S.A. 70:2317–2320.CrossRefGoogle Scholar
  10. 10.
    Fry, I., Papageorgiv, G., Tel-Or, E., andPacker, L. (1977) Z. Natur. 32: 110- 117.Google Scholar
  11. 11.
    Markovits, A., andVenkatasubramanian, K. Unpublished results.Google Scholar
  12. 12.
    Butler, W. L., andKitajama, M. (1975)In: Solar Energy: Biological Conversion Systems, Imperial College, London, p. 13.Google Scholar
  13. 13.
    Bylinsky, G. (1976) Fortune, September, p. 152.Google Scholar
  14. 14.
    Krasner, A. (1977) Proceedings of the Bio-Saline Research Workshop.Google Scholar
  15. 15.
    Howell, J., andVieth, W. R. Unpublished results.Google Scholar
  16. 16.
    Guerrero, M., Manzano, C., andLosada, M. (1974) Plant Sci. Lett. 3: 237–278.Google Scholar
  17. 17.
    Candar, P., Manzano, C., andLosada, M. (1976) Nature 262: 715.CrossRefGoogle Scholar
  18. 18.
    Markovits, A., andVenkatasubramanian, K. (1977) Plant Physiol, (submitted).Google Scholar
  19. 19.
    Mitsui, A. (1975) Multiple utilization of tropical and subtropical marine photosynthetic organisms, Proc. Third Int. Ocean Dev. Conf., Tokyo.Google Scholar
  20. 20.
    Stoeckenius, W. (1977) Fed. Proc. 36: 1797.Google Scholar
  21. 21.
    Henderson, R. (1977) Ann. Rev. Biophys. Bioeng. 6: 87–109.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1977

Authors and Affiliations

  • K. Venkatasubramanian
    • 1
  1. 1.H. J. Heinz CompanyPittsburghPennsylvania

Personalised recommendations