Journal of Solid-Phase Biochemistry

, Volume 1, Issue 3, pp 197–208 | Cite as

Electrolytic process for regenerating nadp from nadph in a polymer matrix-bound form

  • Masuo Aizawa
  • Yoshihito Ikariyama
  • Shuichi Suzuki


Regeneration of nicotinamide adenine dinucleotide phosphate (NADP) from its reduced form (NADPH) was performed in a matrix-bound form by an electrolytic method. NADP was immobilized to alginic acid. No significant loss of coenzymic function was induced by the immobilization of NADP on the matrix. Bound NADP was soluble in water. Glucose-6-phosphate dehydrogenase (G-6-PDH) was taken as a model system of coenzyme requiring enzyme. G-6-PDH immobilized on alumina particles was coupled with the soluble form of bound NADP in a fluidized bed type of reactor. The enzymatically reduced coenzyme was electrolytically oxidized in the coenzyme regenerator of NADP from NADPH, which was found to cause no harmful loss of coenzymic function.


NADPH Alginic Acid Alumina Particle Feed Solution Anode Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larson, P., andMosbach, K. (1971) Biotechnol. Bioeng. 13: 393.CrossRefGoogle Scholar
  2. 2.
    Weibel, M. K., Weetall, H. H., andBright, H. J. (1971) Biochem. Biophys. Res. Commun. 44: 347.CrossRefGoogle Scholar
  3. 3.
    Kawai, K., andEguchi, Y. (1975) J. Ferment. Technol. 53: 588.Google Scholar
  4. 4.
    Wykes, J. R., Dunnill, P., andLilly, M. D. (1975) Biotechnol. Bioeng. 17: 51.CrossRefGoogle Scholar
  5. 5.
    Underwood, A. L., andBurnett, J. N. (1972)In Electroanalytical Chemistry, Vol. 6,Bard, A. J. (ed.), Marcel Dekker, New York, pp. 1–85.Google Scholar
  6. 6.
    Janik, B., andElving, P. J. (1968) Chem. Rev. 68: 295.CrossRefGoogle Scholar
  7. 7.
    Blaedele, W. J., andHaas, R. G. (1970) Anal. Chem. 42: 918.CrossRefGoogle Scholar
  8. 8.
    Leduc, P., andThevenot, D. (1974) Bioelectrochem. Bioenergetics 1: 96.CrossRefGoogle Scholar
  9. 9.
    Braun, R. D., Santhanam, K. S. V., andElving, P. J. (1975) J. Am. Chem. Soc. 97: 2591.CrossRefGoogle Scholar
  10. 10.
    Aizawa, M., Coughlin, R. W., andCharles, M. (1975) Biochim. Biopys. Acta 385: 362.Google Scholar
  11. 11.
    Coughlin, R. W., Aizawa, M., Alexander, B. F., andCharles, M. (1975) Biotechnol. Bioeng. 17: 515.CrossRefGoogle Scholar
  12. 12.
    Coughlin, R. W., Aizawa, M., andCharles, M. (1976) Biotechnol. Bioeng. 18: 199.CrossRefGoogle Scholar
  13. 13.
    Aizawa, M., Coughlin, R. W., andCharles, M. (1976) Biotechnol. Bioeng. 18: 209.CrossRefGoogle Scholar
  14. 14.
    Aizawa, M.,Coughlin, R.W., andCharles, M. (in press) Biochim. Biophys. Acta.Google Scholar
  15. 15.
    Mosbach, K., Guilford, H., Ohlsson, R., andScott, M. (1972) Biochem. J. 127:625.Google Scholar

Copyright information

© Humana Press Inc. 1977

Authors and Affiliations

  • Masuo Aizawa
    • 1
  • Yoshihito Ikariyama
    • 1
  • Shuichi Suzuki
    • 1
  1. 1.Research Laboratory of Resources UtilizationTokyo Institute of TechnologyTokyoJapan

Personalised recommendations