Skip to main content
Log in

Chemically modified nylons as supports for enzyme immobilization

II. Isocyanide, dibromoisocyanide, and acylhydrazide derivatives of nylon

  • Published:
Journal of Solid-Phase Biochemistry Aims and scope Submit manuscript

Abstract

An isocyanide derivative of nylon, polyisonitrile-nylon (1,2), was used as a starting material whereby, through a series of modification reactions, different chemically reactive functional groups could be introduced on the polyamide backbone. The chemistry employed allowed for considerable flexibility in the choice of procedures for covalent fixation of proteins, all starting from the same chemically reactive parent polymer, polyisonitrile-nylon. Thus, polyisonitrilenylon could be used directly for the immobilization of enzymes via fourcomponent condensation reactions. The isocyanide functional groups of the parent polymer could be transformed, by treatment with bromine, into the strongly electrophilic dibromoisocyanide (—N=CBrb2) groups. The selectivity of the —N=CBrb2 group toward the various functional groups present in proteins could be regulated by appropriate control of the pH of the coupling reaction. Dibromoisocyanide-nylon was also further modified into other types of chemically reactive nylon derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, L., Freeman, A., andSokolovsky, M. (1974) “Derivatized Nylon: A New Support for the Immobilization of Enzymes.”In Enzyme Engineering, Vol. 2,Pye, E. K., andWingard, L. B. (eds.), Plenum Press, New York, pp. 97–104.

    Google Scholar 

  2. Goldstein, L., Freeman, A., andSokolovsky, M. (1974) Biochem. J. 143: 497.

    CAS  Google Scholar 

  3. Ugi, I. (1962) Angew. Chem. Int. Ed. Engl. 1:8.

    Article  Google Scholar 

  4. Ugi, I. (ed.) (1971) Isonitrile Chemistry, Academic Press, New York.

    Google Scholar 

  5. Lamed, R., Levin, Y., andWilchek, M. (1973) Biochim. Biophys. Acta 304: 231.

    CAS  Google Scholar 

  6. Arora, A. S., Hinrichs, E. V., andUgi, I. (1974) Z. Anal. Chem. 269: 124.

    Article  CAS  Google Scholar 

  7. Burkhardt, J., Feinauer, R., Gulbins, E., andHamann, K. (1966) Chem. Ber. 99: 1912.

    Article  CAS  Google Scholar 

  8. Kühle, E., Anders, B. Klauke, E., Tarnow, H., andZumach, G. (1962) Angew Chem. Int. Ed. Engl. 1: 8.

    Article  Google Scholar 

  9. Ellman, G. L. (1959) Arch. Biochem. Biophys. 82: 70.

    Article  CAS  Google Scholar 

  10. Butterworth, P. H. W., Baum, H., andPorter, J. W. (1967) Arch. Biochem. Biophys. 118:716.

    Article  CAS  Google Scholar 

  11. Inman, J. K. (1974) Methods Enzymol. 34: 30.

    Article  CAS  Google Scholar 

  12. Hamilton, P. B. (1963) Anal. Chem. 35: 2055.

    Article  CAS  Google Scholar 

  13. Hamilton, P. B. (1967) Methods Enzymol. 11: 15.

    Article  CAS  Google Scholar 

  14. Lowry, D. H., Rosenbrough, N. J., Farr, A. L., andRandall, R. J. (1951) J. Biol. Chem. 193: 265.

    CAS  Google Scholar 

  15. Layne, E. (1957) Methods Enzymol. 3: 447.

    Article  Google Scholar 

  16. Jacobsen, C. F., LÉonis, J. Lindestrom-Lang, K., andOttesen, M. (1957) Methods Biochem. Anal. 4: 171.

    Article  CAS  Google Scholar 

  17. Walsh, K. A., andWilcox, P. E. (1970) Methods Enzymol. 19: 31.

    Article  Google Scholar 

  18. Goldstein, L., Pecht, M., Blumberg, S., Atlas, D., andLevin, Y. (1970) Biochemistry 9: 2322.

    Article  CAS  Google Scholar 

  19. Goldstein, L. (1973) Biochim. Biophys. Acta 315:1.

    CAS  Google Scholar 

  20. Goldstein, L. (1970) Methods Enzymol. 19: 935.

    Article  Google Scholar 

  21. Goldstein, L. (1973) Biochim. Biophys. Acta 327: 132.

    CAS  Google Scholar 

  22. Goldstein, L., (1977) Methods Enzymol. 44 (Chapt. 29).

    Google Scholar 

  23. Means, G. E., and Feeney, R. E. (1971) Chemical Modification of Proteins, Holden- Day Inc., San Francisco.

  24. Glazer, A. N., Delange, R. J., and Sigman, D. S. (1975) Chemical Modification of Proteins, North-Holland, Amsterdam.

  25. Hantzsch, A., andMai, L. (1895) Ber. Dtsch. Chem. Ges. 28: 977.

    Article  CAS  Google Scholar 

  26. Stark, G. R. (1964) J. Biol. Chem. 239: 1411.

    CAS  Google Scholar 

  27. Ludwig, B. J., Stiefel, F. J., Powell, L. S., andDiamond, J. (1964) J. Med. Chem. 7: 174.

    Article  CAS  Google Scholar 

  28. Friedman, M. (1973) The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins, Pergamon Press, Oxford.

    Google Scholar 

  29. Boyer, R. D. (ed.) (1971) The Enzymes, Vol. Ill, Academic Press, New York.

    Google Scholar 

  30. Beeley, J., andNeurath, H. (1968) Biochemistry 7: 1239.

    Article  CAS  Google Scholar 

  31. Möckel, K., andGehlen, H. (1964) Z. Chem. 4: 388.

    Google Scholar 

  32. Neidlein, R., andHanssman, W. (1967) Arch. Pharm. (Weinheim, Ger.) 300: 180.

    Article  CAS  Google Scholar 

  33. Perrin, D. D. (1965) Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London.

  34. Reithel, F. J. (1971) “Ureases.”In The Enzymes, 3rd ed.,Boyer, P. D. (ed.), Vol. IV, Academic Press, New York, pp. 1–21.

    Google Scholar 

  35. Freeman, A., Granot, R., Sokolovsky, M. andGoldstein, L. (1977) J. Solid-Phase Biochem. 1: 275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, A., Sokolovsky, M. & Goldstein, L. Chemically modified nylons as supports for enzyme immobilization. Journal of Solid-Phase Biochemistry 1, 261–274 (1976). https://doi.org/10.1007/BF02990965

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990965

Keywords

Navigation