Science in China Series B: Chemistry

, Volume 48, Issue 1, pp 1–10 | Cite as

DNA and RNA sensor

  • Liu Tao 
  • Lin Lin 
  • Zhao Hong 
  • Jiang Long 


This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.


DNA detection biosensor immobilization of DNA hybridization of DNA nanoparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson, E. K., Instant DNA detection, Chem. Eng. News., 1998, 76(21): 47–49.Google Scholar
  2. 2.
    Yang, M. S., McGovern, M. E., Thompson, M., Genosensor technology and the detection of interfacial nucleic acid chemistry, Anal. Chim. Acta, 1997, 346(3): 259–275.Google Scholar
  3. 3.
    Clark, Jr. L. C., Monitor and control of blood and tissue oxygen tensions, Trans. Am. Soc. Artif. Intern. Organs., 1956, 2, 41–48.Google Scholar
  4. 4.
    Watson, J. D., Crick, H. F. C., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, 1953, 171, 737.CrossRefGoogle Scholar
  5. 5.
    Yang, M. S., Kong, R. Y. C., Kazmi, N., Covalent immobilization of oligonucleotides on modified glass/silicon surfaces for solidphase DNA hybridization and amplification, Chem. Lett., 1998, (3): 257–258.CrossRefGoogle Scholar
  6. 6.
    Liu, S. H., He, P. G, Fang, Y Z., Voltammetric study on electrochemical behavior of Deoxyribonucleic Acid-Mitoxanthrone intercalation on graphite electrode, Chinese Journal of Analytical Chemistry, 1996, 24: 1301–1304.Google Scholar
  7. 7.
    Xiao, C. D., Yang, M., Sui, S. F., DNA-containing organized molecular structure based on controlled assembly on supported monolayers, Thin solid films, 1998, 327: 647–651.CrossRefGoogle Scholar
  8. 8.
    Marrazza, G., Chianella, I., Mascini, M., Disposable DNA electrochemical sensor for hybridization detection, Biosens. Bioelectron., 1999, 14(1): 43–51.CrossRefGoogle Scholar
  9. 9.
    Moser, I., Schalkhammer, T., Pittner, F., Surface techniques for an electrochemical DNA biosensor, Biosens. Bioelectron, 1997, 12: 729–737.CrossRefGoogle Scholar
  10. 10.
    Nanness, J. V., Kalbfleisch, S., Petrie, C. R. et al., Aversatile solid support system for oligodeoxynucleotide probe-based hybridization assays, Nucleic Acids Res., 1991, 19(12): 3345–3350.CrossRefGoogle Scholar
  11. 11.
    Livache, T., Roget, A., Dejean, E. et al., Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Res., 1994, 22(15): 2915–2921.CrossRefGoogle Scholar
  12. 12.
    Caruso, F., Rodda, C. E., Furlong, D. N. et al., DNA binding and hybridization on gold and derivatized surfaces, Sensors and Actuators B, 1997, 41(1-3): 189–197.CrossRefGoogle Scholar
  13. 13.
    Xu, X. H., Bard, A. J., Immobilization of DNA on an Aluminum(III) alkanebisphosphonate thin-film with electrogeneratedchemiluminescent detection, J. Am. Chem. Soc., 1994, 116(18): 8386–8387.CrossRefGoogle Scholar
  14. 14.
    Lin, L., Li, J. R., Jiang, L., Fixation of single-stranded DNA nucleotide by self assembly technology, Colloids and Surfaces A, 2000, 175(1-2): 11–15.CrossRefGoogle Scholar
  15. 15.
    Nicolini, C., Erokhin, V., Facci, P. et al., Quartz balance DNA sensor, Biosens Bioelectron, 1997, 12(7): 613–618.CrossRefGoogle Scholar
  16. 16.
    Lin, L., Li, J. R., Jiang, L., Amphiphiles at Interfaces Symposium, 1999, A50.Google Scholar
  17. 17.
    Cater, M. T., Rodoriguez, M., Bard, A. J., Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine, J. Am. Chem. Soc., 1989, 111(24): 8901–8911.CrossRefGoogle Scholar
  18. 18.
    Millan, K. M., Saraullo, A., Mikkelsen, S. R, Voltammetric DNA biosensor for cystic-fibrosis based on a modified carbon-paste electrode, Anal. Chem., 1994, 66(18): 2943–2948.CrossRefGoogle Scholar
  19. 19.
    Palanti, S., Marrazza, G., Mascini, M., Electrochemical DNA probes, Anal. Lett., 1996, 29(13): 2309–2331.Google Scholar
  20. 20.
    Hashimoto, K., Miwa, K., Ishimori, Y., Redox-labeling of DNA by photoadduct conjugate formation with ferrocene derivatized psoralen, Supramol Chem., 1993, 2, 265: i291-i292.Google Scholar
  21. 21.
    Wang, J., Cai, X. H., Rivas, G., DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem., 1996, 68(15): 2629–2634.CrossRefGoogle Scholar
  22. 22.
    Wang, J., Rivas, G., Fernandes, J. R. et al., Indicator-free electrochemical DNA hybridization biosensor, Anal. Chim. Acta., 1998, 375(3): 197–203.CrossRefGoogle Scholar
  23. 23.
    Xu, X. H., Bard, A. J., Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin-film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc., 1995, 117(9): 2627–2631.CrossRefGoogle Scholar
  24. 24.
    Lee, J. S., Latimer, L. J. P., Reid, R. S., A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal-ions, Biochem. Cell. Biol., 1993, 71(3-4): 162–168.CrossRefGoogle Scholar
  25. 25.
    Aich, P., Skinner, R. J. S., Wettig, S. D. et al., Long range molecular wire behaviour in a metal complex of DNA, Journal of Biomolecular Structure and Dynamics, 2002, 20(1): 93–98.Google Scholar
  26. 26.
    Piunno, P. A. E., Krull, V. J., Hudson, R. H. E. et al., Fiber optic biosensor for fluorometric detection of DNA hybridization, Anal. Chim. Acta, 1994, 288(3): 205–214.CrossRefGoogle Scholar
  27. 27.
    Graham, C. R., Leslie, D., Squirrell, D. J., Gene probe assays on a fiberoptic evanescent wave biosensor, Biosens. Bioelectron., 1992, 7(7): 487–493.CrossRefGoogle Scholar
  28. 28.
    Kleinjung, F., Bier, F. F., Warsilnke, A. et al., Fibre-optic genosensor for specific determination of femtomolar DNA oligomers, Anal. Chim. Acta., 1997, 350(1-2): 51–58.CrossRefGoogle Scholar
  29. 29.
    Bier, F. F., Kleinjang, F., Scheller, F. W., Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor, Sensors and Actuators B., 1997, 8(1-3): 78–82.CrossRefGoogle Scholar
  30. 30.
    Thiel, A. J., Frutos, A. G., Jordan, C. E. et al., In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces, Anal. Chem., 1997, 69(24): 4948–4956.CrossRefGoogle Scholar
  31. 31.
    Watts, H. J., Yeung, D., Parkes, H., Real-time detection and quantification of DNA hybridization by an optical biosensor, Anal. Chem., 1995, 67(23): 4283–4289.CrossRefGoogle Scholar
  32. 32.
    Okahata, Y., Matsunobu, Y., Ijiro, K. et al., Hybridization of nucleic-acids immobilized on a quartz crystal microbalance, J. Am. Chem. Soc., 1992, 114(21): 8299–8300.CrossRefGoogle Scholar
  33. 33.
    Okahata, Y., Kawase, M., Niikura, K. et al., Kinetic measurements of DNA hybridisation on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance, Anal. Chem., 1998, 70(7): 1288–1296.CrossRefGoogle Scholar
  34. 34.
    Caruso, F., Rodda, E., Furlong, D. et al., Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development, Anal. Chem., 1997, 69(11): 2043–2049.CrossRefGoogle Scholar
  35. 35.
    Wang, J., Nielsen, P. E., Jiang, M. et al., Mismatch sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance, Anal. Chem., 1997, 69(24): 5200–5202.CrossRefGoogle Scholar
  36. 36.
    Yamaguchi, S., Shimomura, T., Adsorption, immobilization, and hybridization of DNA studied by the use of quartz-crystal oscillators, Anal. Chem., 1993, 65(14): 1925–1927.CrossRefGoogle Scholar
  37. 37.
    Su, H., Yang, M., Kallury, K. M. R et al., Network analysi—acoustic energy transmission detection of polynucleotide hybridization at the sensor liquid interface, Analyst, 1993, 118(3): 309–312.CrossRefGoogle Scholar
  38. 38.
    Furtado, L. M., Su, H. B., Thompson, M. et al., Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector, Anal. Chem., 1999, 71(6): 1167–1175.CrossRefGoogle Scholar
  39. 39.
    Mei, H. Y., Galan, A. A., Halim N. S. et al., Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside abtibiotics, Bioorg. Med. Chem. Lett., 1995, 5: 2755–2760.CrossRefGoogle Scholar
  40. 40.
    Bueno, G. J., Klimkait, T., Gilbert, I. H. et al., Solid-phase synthesis of diamine and polyamine amino acid derivatives as HIV-1 Tat-TAR binding inhibitors, Bioorg. Med. Chem., 2003, 11: 87–94.CrossRefGoogle Scholar
  41. 41.
    Gelus, N., Hamy, F., Bailly, C., Molecular basis of HIV-1 TAR RNA specific recognition by an acridine tat-antagonist, Bioorg. Med. Chem., 1999, 7: 1075–1079.CrossRefGoogle Scholar
  42. 42.
    Lohr, M., Kibler, K. V., Zachary, I. et al., Small HIV-1-Tat peptides inhibit HIV replication in cultured T-cells, Biochem. Biophys. Res. Commun., 2003, 300: 609–613.CrossRefGoogle Scholar
  43. 43.
    Tamilarasu, N., Huq, I., Rana, T. M., Design, synthesis, and biological activity of a cyclic peptide: an inhibitor of HIV-1 Tat-TAR interaction in human cells, Bioorg. Med. Chem. Lett., 2000, 10: 971–974.CrossRefGoogle Scholar
  44. 44.
    Garbesi, A., Hamy, F., Maffini, M. et al., TAR-RNA binding by HIV-1 Tat protein is selectively inhibited by its L-enantiomer, Nucleic Acids Research, 1998, 26: 2886–2890.CrossRefGoogle Scholar
  45. 45.
    Schwergold, C., Depecker, G., Giorgio, C. D. et al., Cylic PNA hexamer-based compound: modelling, synthesis and inhibition of the HIV-1 RNA dimerization process, Tetrahedron, 2002, 38: 5675–5687.CrossRefGoogle Scholar
  46. 46.
    Wyszko, E., Barciszewska, M. Z., Bald, R. et al., The specific hydrolysis of HIV-1 TAR RNA element with the anti-TAR hammerhead ribozyme: structural and functional implications, Inter. J. Bio. Macromolecules, 2001, 28: 373–380.CrossRefGoogle Scholar
  47. 47.
    Karn, J., Tackling Tat, J. Mol. Biol., 1999, 293: 235–254.CrossRefGoogle Scholar
  48. 48.
    Zhao, H., Dai, D.S., Li, J. R. et al., Quantitative study of HIV-1 Tat peptide and TAR RNA interaction inhibited by poly(allylamine hydrochloride), Biochem. Biophys. Res. Commun., 2003, 312: 351–354.CrossRefGoogle Scholar
  49. 49.
    Zhao, H., Li, J. R., Xi, F. et al., Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA, FEBS Letters, 2004, 563:241–245.CrossRefGoogle Scholar
  50. 50.
    Zhao, H., Li, J. R., Jiang, L., Inhibiton of HIV-1 TAR RNA-Tat peptide complexation using poly(acrylic acid), Biochem. Biophys. Res. Commun., 2004, 320: 95–99.CrossRefGoogle Scholar
  51. 51.
    Tassew, N., Thompson, M., Kinetic characterization of TAR RNA-Tat peptide and neomycin interactions by acoustic wavebiosensor, Biophys. Chem., 2003, 106: 241–252.CrossRefGoogle Scholar
  52. 52.
    Mazzola, L. T., Frank, C. W., Fodor, S. P. A. et al., Discrimination of DNA hybridization using chemical force microscopy, Biophys. J., 1999, 76(6): 2922–2933.CrossRefGoogle Scholar
  53. 53.
    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. et al., ADNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382(6592): 607–609.CrossRefGoogle Scholar
  54. 54.
    Elghanian, R., Storhoff, J. J., Mucic, R. C. et al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997, 277(5329): 1078–1081.CrossRefGoogle Scholar
  55. 55.
    Blonder, R., Levi, S., Tao, G. et al., Development of amperometric and microgravimetric immunosensors and reversible immunosensors using antigen and photoisomerizable antigen monolayer electrodes, J. Am. Chem. Soc., 1997, 119(43): 10467–10478.CrossRefGoogle Scholar
  56. 56.
    Zhou, X. C, O’Shea, S. J., Li, S. F. Y., Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides, Chem. Commun., 2000, (11): 953–954.CrossRefGoogle Scholar
  57. 57.
    Liu, T., Tang, J. A., Zhao, H. Q. et al., Sensitivity enhancement of DNA sensors by nanogold surface modification, Biochem. Biophys. Res. Commun., 2002, 295(1): 14–16.CrossRefGoogle Scholar
  58. 58.
    Liu, T., Tang, J. A., Zhao, H. Q. et al., Particle size effect of the DNA sensor amplified with gold nanoparticles, Langmuir, 2002, 18:5624–5626.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Liu Tao 
    • 1
  • Lin Lin 
    • 1
  • Zhao Hong 
    • 1
  • Jiang Long 
    • 1
  1. 1.Key Laboratory of Colloid and Interface, Center of Molecular Science, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations