Skip to main content
Log in

Abstract

This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, E. K., Instant DNA detection, Chem. Eng. News., 1998, 76(21): 47–49.

    Google Scholar 

  2. Yang, M. S., McGovern, M. E., Thompson, M., Genosensor technology and the detection of interfacial nucleic acid chemistry, Anal. Chim. Acta, 1997, 346(3): 259–275.

    CAS  Google Scholar 

  3. Clark, Jr. L. C., Monitor and control of blood and tissue oxygen tensions, Trans. Am. Soc. Artif. Intern. Organs., 1956, 2, 41–48.

    Google Scholar 

  4. Watson, J. D., Crick, H. F. C., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, 1953, 171, 737.

    Article  CAS  Google Scholar 

  5. Yang, M. S., Kong, R. Y. C., Kazmi, N., Covalent immobilization of oligonucleotides on modified glass/silicon surfaces for solidphase DNA hybridization and amplification, Chem. Lett., 1998, (3): 257–258.

    Article  Google Scholar 

  6. Liu, S. H., He, P. G, Fang, Y Z., Voltammetric study on electrochemical behavior of Deoxyribonucleic Acid-Mitoxanthrone intercalation on graphite electrode, Chinese Journal of Analytical Chemistry, 1996, 24: 1301–1304.

    CAS  Google Scholar 

  7. Xiao, C. D., Yang, M., Sui, S. F., DNA-containing organized molecular structure based on controlled assembly on supported monolayers, Thin solid films, 1998, 327: 647–651.

    Article  Google Scholar 

  8. Marrazza, G., Chianella, I., Mascini, M., Disposable DNA electrochemical sensor for hybridization detection, Biosens. Bioelectron., 1999, 14(1): 43–51.

    Article  CAS  Google Scholar 

  9. Moser, I., Schalkhammer, T., Pittner, F., Surface techniques for an electrochemical DNA biosensor, Biosens. Bioelectron, 1997, 12: 729–737.

    Article  CAS  Google Scholar 

  10. Nanness, J. V., Kalbfleisch, S., Petrie, C. R. et al., Aversatile solid support system for oligodeoxynucleotide probe-based hybridization assays, Nucleic Acids Res., 1991, 19(12): 3345–3350.

    Article  Google Scholar 

  11. Livache, T., Roget, A., Dejean, E. et al., Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Res., 1994, 22(15): 2915–2921.

    Article  CAS  Google Scholar 

  12. Caruso, F., Rodda, C. E., Furlong, D. N. et al., DNA binding and hybridization on gold and derivatized surfaces, Sensors and Actuators B, 1997, 41(1-3): 189–197.

    Article  Google Scholar 

  13. Xu, X. H., Bard, A. J., Immobilization of DNA on an Aluminum(III) alkanebisphosphonate thin-film with electrogeneratedchemiluminescent detection, J. Am. Chem. Soc., 1994, 116(18): 8386–8387.

    Article  CAS  Google Scholar 

  14. Lin, L., Li, J. R., Jiang, L., Fixation of single-stranded DNA nucleotide by self assembly technology, Colloids and Surfaces A, 2000, 175(1-2): 11–15.

    Article  CAS  Google Scholar 

  15. Nicolini, C., Erokhin, V., Facci, P. et al., Quartz balance DNA sensor, Biosens Bioelectron, 1997, 12(7): 613–618.

    Article  CAS  Google Scholar 

  16. Lin, L., Li, J. R., Jiang, L., Amphiphiles at Interfaces Symposium, 1999, A50.

  17. Cater, M. T., Rodoriguez, M., Bard, A. J., Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine, J. Am. Chem. Soc., 1989, 111(24): 8901–8911.

    Article  Google Scholar 

  18. Millan, K. M., Saraullo, A., Mikkelsen, S. R, Voltammetric DNA biosensor for cystic-fibrosis based on a modified carbon-paste electrode, Anal. Chem., 1994, 66(18): 2943–2948.

    Article  CAS  Google Scholar 

  19. Palanti, S., Marrazza, G., Mascini, M., Electrochemical DNA probes, Anal. Lett., 1996, 29(13): 2309–2331.

    CAS  Google Scholar 

  20. Hashimoto, K., Miwa, K., Ishimori, Y., Redox-labeling of DNA by photoadduct conjugate formation with ferrocene derivatized psoralen, Supramol Chem., 1993, 2, 265: i291-i292.

    Google Scholar 

  21. Wang, J., Cai, X. H., Rivas, G., DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem., 1996, 68(15): 2629–2634.

    Article  CAS  Google Scholar 

  22. Wang, J., Rivas, G., Fernandes, J. R. et al., Indicator-free electrochemical DNA hybridization biosensor, Anal. Chim. Acta., 1998, 375(3): 197–203.

    Article  CAS  Google Scholar 

  23. Xu, X. H., Bard, A. J., Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin-film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc., 1995, 117(9): 2627–2631.

    Article  CAS  Google Scholar 

  24. Lee, J. S., Latimer, L. J. P., Reid, R. S., A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal-ions, Biochem. Cell. Biol., 1993, 71(3-4): 162–168.

    Article  CAS  Google Scholar 

  25. Aich, P., Skinner, R. J. S., Wettig, S. D. et al., Long range molecular wire behaviour in a metal complex of DNA, Journal of Biomolecular Structure and Dynamics, 2002, 20(1): 93–98.

    CAS  Google Scholar 

  26. Piunno, P. A. E., Krull, V. J., Hudson, R. H. E. et al., Fiber optic biosensor for fluorometric detection of DNA hybridization, Anal. Chim. Acta, 1994, 288(3): 205–214.

    Article  CAS  Google Scholar 

  27. Graham, C. R., Leslie, D., Squirrell, D. J., Gene probe assays on a fiberoptic evanescent wave biosensor, Biosens. Bioelectron., 1992, 7(7): 487–493.

    Article  CAS  Google Scholar 

  28. Kleinjung, F., Bier, F. F., Warsilnke, A. et al., Fibre-optic genosensor for specific determination of femtomolar DNA oligomers, Anal. Chim. Acta., 1997, 350(1-2): 51–58.

    Article  CAS  Google Scholar 

  29. Bier, F. F., Kleinjang, F., Scheller, F. W., Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor, Sensors and Actuators B., 1997, 8(1-3): 78–82.

    Article  Google Scholar 

  30. Thiel, A. J., Frutos, A. G., Jordan, C. E. et al., In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces, Anal. Chem., 1997, 69(24): 4948–4956.

    Article  CAS  Google Scholar 

  31. Watts, H. J., Yeung, D., Parkes, H., Real-time detection and quantification of DNA hybridization by an optical biosensor, Anal. Chem., 1995, 67(23): 4283–4289.

    Article  CAS  Google Scholar 

  32. Okahata, Y., Matsunobu, Y., Ijiro, K. et al., Hybridization of nucleic-acids immobilized on a quartz crystal microbalance, J. Am. Chem. Soc., 1992, 114(21): 8299–8300.

    Article  CAS  Google Scholar 

  33. Okahata, Y., Kawase, M., Niikura, K. et al., Kinetic measurements of DNA hybridisation on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance, Anal. Chem., 1998, 70(7): 1288–1296.

    Article  CAS  Google Scholar 

  34. Caruso, F., Rodda, E., Furlong, D. et al., Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development, Anal. Chem., 1997, 69(11): 2043–2049.

    Article  CAS  Google Scholar 

  35. Wang, J., Nielsen, P. E., Jiang, M. et al., Mismatch sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance, Anal. Chem., 1997, 69(24): 5200–5202.

    Article  CAS  Google Scholar 

  36. Yamaguchi, S., Shimomura, T., Adsorption, immobilization, and hybridization of DNA studied by the use of quartz-crystal oscillators, Anal. Chem., 1993, 65(14): 1925–1927.

    Article  CAS  Google Scholar 

  37. Su, H., Yang, M., Kallury, K. M. R et al., Network analysi—acoustic energy transmission detection of polynucleotide hybridization at the sensor liquid interface, Analyst, 1993, 118(3): 309–312.

    Article  CAS  Google Scholar 

  38. Furtado, L. M., Su, H. B., Thompson, M. et al., Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector, Anal. Chem., 1999, 71(6): 1167–1175.

    Article  CAS  Google Scholar 

  39. Mei, H. Y., Galan, A. A., Halim N. S. et al., Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside abtibiotics, Bioorg. Med. Chem. Lett., 1995, 5: 2755–2760.

    Article  CAS  Google Scholar 

  40. Bueno, G. J., Klimkait, T., Gilbert, I. H. et al., Solid-phase synthesis of diamine and polyamine amino acid derivatives as HIV-1 Tat-TAR binding inhibitors, Bioorg. Med. Chem., 2003, 11: 87–94.

    Article  Google Scholar 

  41. Gelus, N., Hamy, F., Bailly, C., Molecular basis of HIV-1 TAR RNA specific recognition by an acridine tat-antagonist, Bioorg. Med. Chem., 1999, 7: 1075–1079.

    Article  CAS  Google Scholar 

  42. Lohr, M., Kibler, K. V., Zachary, I. et al., Small HIV-1-Tat peptides inhibit HIV replication in cultured T-cells, Biochem. Biophys. Res. Commun., 2003, 300: 609–613.

    Article  CAS  Google Scholar 

  43. Tamilarasu, N., Huq, I., Rana, T. M., Design, synthesis, and biological activity of a cyclic peptide: an inhibitor of HIV-1 Tat-TAR interaction in human cells, Bioorg. Med. Chem. Lett., 2000, 10: 971–974.

    Article  CAS  Google Scholar 

  44. Garbesi, A., Hamy, F., Maffini, M. et al., TAR-RNA binding by HIV-1 Tat protein is selectively inhibited by its L-enantiomer, Nucleic Acids Research, 1998, 26: 2886–2890.

    Article  CAS  Google Scholar 

  45. Schwergold, C., Depecker, G., Giorgio, C. D. et al., Cylic PNA hexamer-based compound: modelling, synthesis and inhibition of the HIV-1 RNA dimerization process, Tetrahedron, 2002, 38: 5675–5687.

    Article  Google Scholar 

  46. Wyszko, E., Barciszewska, M. Z., Bald, R. et al., The specific hydrolysis of HIV-1 TAR RNA element with the anti-TAR hammerhead ribozyme: structural and functional implications, Inter. J. Bio. Macromolecules, 2001, 28: 373–380.

    Article  CAS  Google Scholar 

  47. Karn, J., Tackling Tat, J. Mol. Biol., 1999, 293: 235–254.

    Article  CAS  Google Scholar 

  48. Zhao, H., Dai, D.S., Li, J. R. et al., Quantitative study of HIV-1 Tat peptide and TAR RNA interaction inhibited by poly(allylamine hydrochloride), Biochem. Biophys. Res. Commun., 2003, 312: 351–354.

    Article  CAS  Google Scholar 

  49. Zhao, H., Li, J. R., Xi, F. et al., Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA, FEBS Letters, 2004, 563:241–245.

    Article  CAS  Google Scholar 

  50. Zhao, H., Li, J. R., Jiang, L., Inhibiton of HIV-1 TAR RNA-Tat peptide complexation using poly(acrylic acid), Biochem. Biophys. Res. Commun., 2004, 320: 95–99.

    Article  CAS  Google Scholar 

  51. Tassew, N., Thompson, M., Kinetic characterization of TAR RNA-Tat peptide and neomycin interactions by acoustic wavebiosensor, Biophys. Chem., 2003, 106: 241–252.

    Article  CAS  Google Scholar 

  52. Mazzola, L. T., Frank, C. W., Fodor, S. P. A. et al., Discrimination of DNA hybridization using chemical force microscopy, Biophys. J., 1999, 76(6): 2922–2933.

    Article  CAS  Google Scholar 

  53. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. et al., ADNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382(6592): 607–609.

    Article  CAS  Google Scholar 

  54. Elghanian, R., Storhoff, J. J., Mucic, R. C. et al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997, 277(5329): 1078–1081.

    Article  CAS  Google Scholar 

  55. Blonder, R., Levi, S., Tao, G. et al., Development of amperometric and microgravimetric immunosensors and reversible immunosensors using antigen and photoisomerizable antigen monolayer electrodes, J. Am. Chem. Soc., 1997, 119(43): 10467–10478.

    Article  CAS  Google Scholar 

  56. Zhou, X. C, O’Shea, S. J., Li, S. F. Y., Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides, Chem. Commun., 2000, (11): 953–954.

    Article  Google Scholar 

  57. Liu, T., Tang, J. A., Zhao, H. Q. et al., Sensitivity enhancement of DNA sensors by nanogold surface modification, Biochem. Biophys. Res. Commun., 2002, 295(1): 14–16.

    Article  CAS  Google Scholar 

  58. Liu, T., Tang, J. A., Zhao, H. Q. et al., Particle size effect of the DNA sensor amplified with gold nanoparticles, Langmuir, 2002, 18:5624–5626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Lin, L., Zhao, H. et al. DNA and RNA sensor. Sc. China Ser. B-Chem. 48, 1–10 (2005). https://doi.org/10.1007/BF02990906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990906

Keywords

Navigation