Advertisement

Biological Trace Element Research

, Volume 30, Issue 2, pp 125–144 | Cite as

A reevaluation of the Fe(II), Ca(II), Zn(II), and proton formation constants of 4,7-diphenyl-1, 10-phenanthrolinedisulfonate

  • Paul F. Bell
  • Yona Chen
  • William E. Potts
  • Rufus L. Chaney
  • Jay S. Angle
Article

Abstract

The compound 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid (BPDS) has been found to be very useful in studying Fe uptake by plants, because it forms a large charged complex that is not absorbed. The quantity of BPDS, bound to metals in hydroponic solutions can be estimated from calculations using formation constants of BPDS complexes. These formation constants were used in an earlier experiment to predict the availability of Cu to corn plants. In the experiment, bioassays indicated that Cu was not as phytoavailable in the BPDS-added solutions as predicted by chemical equilibrium calculations. To determine sources of error in this prediction, metal and proton BPDS formation constants were reevaluated at 25°C and 0.10M ionic strength. The CaBPDS formation constant was determined by direct measurement of CaBPDS3 formation and was shown to be ∼1.0; a value much less than that reported before. Formation constants for the HBPDS, H(BPDS)2 and H(BPDS)3, β1, β2, and β3 complexes were, respectively, 5.05±0.044, 7.44±0.019, and 9.33±0.28. The BPDS sulfonic acid group pKs were <1.0, not 2.8 as has been reported. The FeBPDS3 complex determined by ligand competition with EDTA (ethylenediaminetetraacetate) was 20.24±0.08. Copper and Zn constants were determined using the method of corresponding solutions. The CuBPDS, CuBPDS2, and CuBPDS3, β1, β2, and β3 constants were, respectively, 9.76±0.08, 15.9, and 20.9. The ZnBPDS, ZnBPDS2, and ZnBPDS3 β1, β2, and β3 constants were, respectively, 6.43±0.07, 10.7±5.4, and 17.3±0.8. Results indicated that, BPDS affinity to metals was similar to that of its parent compound, phenanthroline, and that errors in published formation constants caused erroneous predictions of Cu phytoavailability used in an earlier experiment.

Index Entries

Corresponding solutions metal bioavailability, effect of copper ion activity on, method of 1, 10-phenanthroline stability constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Chaney, J. C. Brown, and L. O. Tiffin,Plant Phys. 50, 208–213 (1971).CrossRefGoogle Scholar
  2. 2.
    J. L. Stauber, and T. M. Florence,Mar. Biol. (Berlin)94, 511–519 (1987)CrossRefGoogle Scholar
  3. 3.
    P. F. Bell, R. L. Chaney, and J. S. Angle,Soil Sci. Soc. Am J. 55, in press (1991).Google Scholar
  4. 4.
    D. R. Parker, L. W. Zelazny, and T. B. Kinraide,Soil Sci. Soc. Am. J. 51, 488–491 (1987).Google Scholar
  5. 5.
    D. K. Nordstrom, L. N. Plummer, T. M. L. Wigley, T. J. Wolery, J. W. Ball, E. A. Jenne, R. L. Bassett, D. A. Crerar, T. M. Florence, B. Fritz, M. Hoffman, G. R. Holdren, Jr., G. M. Lafon, S. V. Mattigod, R. E. McDuff, F. Morel, M. M. Reddy, G. Sposito, and J. Thrailkill,Chemical Modeling in Aqueous Systems, Speciation, Sorption, Solubility, and Kinetics, Jenne, E. A., ed., Am. Chem. Soc. Ser. 93. Washington, D.C., 1979, pp. 857–892.Google Scholar
  6. 6.
    W. A. E. McBryde,A Critical Review of Equilibrium Data for Proton- and Metal Complexes of 1,10-Phenanthroline, 2,2′-Bipyridyl and Related Compounds, IUPAC Chem. Data Ser. No. 17. Pergamon, New York, 1978.Google Scholar
  7. 7.
    K. Sone, P. Krumholz, and H. Stammreich,J. Am. Chem. Soc. 77, 777–780 (1955).CrossRefGoogle Scholar
  8. 8.
    G. Anderegg,Helv. Chim. Acta 46, 2397–2410 (1963).CrossRefGoogle Scholar
  9. 9.
    P. R. Mitchell, and H. Siegel,J. Am. Chem. Soc. 100, 1564–1570 (1978).CrossRefGoogle Scholar
  10. 10.
    A. P. Schwab, PhD thesis. Colorado State University, Fort Collins, (1981).Google Scholar
  11. 11.
    H. Irving, and R. J. P. Williams,J. Chem. Soc. 1953, 3192–3210 (1953).CrossRefGoogle Scholar
  12. 12.
    D. G. TuckPure Appl. Chem. 61, 1161–1163 (1989).CrossRefGoogle Scholar
  13. 13.
    G. Anderegg, G.Critical Survey of Stability Constants of EDTA Complexes. International Union of Pure Applied Chemistry, Chem. Data Series No. 14, Pergamon, New York, 1975.Google Scholar
  14. 14.
    D. D. Perrin and B. Dempsey,Buffers For pH and Metal Ion Control, Wiley and Sons, New York, 1974.Google Scholar
  15. 15.
    A. E. Martell and R. J. Motekaitis,Determination and Use of Stability Constants, VCH, New York, 1988.Google Scholar
  16. 16.
    A. E. Martell and R. M. Smith,Critical Stability Constants, vol. 1, Plenum, New York, 1974.Google Scholar
  17. 17.
    H. Irving, and D. H. Mellor,J. Chem. Soc. 1955, 3457–3462 (1955).CrossRefGoogle Scholar
  18. 18.
    H. Irving and H. S. Rosotti,J. Chem. Soc. 1953, 3397–3405 (1953).CrossRefGoogle Scholar
  19. 19.
    W. A. E. McBryde,Talanta 21, 979–1004 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    H. S. Rosotti,Talanta 21, 809–829 (1974).CrossRefGoogle Scholar
  21. 21.
    H. I. Britt, and R. H. Luecke,Technometrics 15, 233–247 (1973).CrossRefGoogle Scholar
  22. 22.
    N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. N. Singh,Biochemistry 5, 467–477 (1966).PubMedCrossRefGoogle Scholar
  23. 23.
    F. Pantani and G. Ciantelli,La Ric. Sci. 38, 953–960 (1968).Google Scholar
  24. 24.
    P. Ulmgren and O. Wahlberg,Acta Chem. Scan. 28, 631–637 (1974).CrossRefGoogle Scholar
  25. 25.
    A. E. Martell, and R. M. Smith,Critical Stability Constants vol. 3. Plenum, New York, 1977.Google Scholar
  26. 26.
    D. Blair and H. Diehl,Talanta 7, 163–174 (1961).CrossRefGoogle Scholar
  27. 27.
    R. C. Weast,CRC Handbook of Chemistry and Physics, 1st Student Ed., CRC, Boca Raton, Louisiana, 1988, pp. D99-D103.Google Scholar
  28. 28.
    M. J. Fahsel and C. V. Banks,J. Am. Chem. Soc. 88, 878–884 (1966).CrossRefGoogle Scholar
  29. 29.
    R. K. Steinhaus and D. W. Margerum,J. Am. Chem. Soc. 88, 441–445 (1966).CrossRefGoogle Scholar
  30. 30.
    A. Cabrera-Martin, R. Gallego-Andreu, and S. Rubio-Barroso,Microchem. J. 27, 530–538 (1982).CrossRefGoogle Scholar
  31. 31.
    A. P. Schwab, and W. L. Lindsay,Soil Sci. Am. J. 53, 29–34 (1989).CrossRefGoogle Scholar
  32. 32.
    A. A. Schilt,Analytical Applications of 1,10-Phenanthroline and Related Compounds, International series monographs in analytical chemistry, vol. 32. Pergamon, Oxford, 1969.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Paul F. Bell
    • 1
    • 2
  • Yona Chen
    • 3
  • William E. Potts
    • 4
  • Rufus L. Chaney
    • 5
  • Jay S. Angle
    • 1
    • 2
  1. 1.Department of AgronomyUniversity of MarylandCollege Park
  2. 2.Soil and Environmental SciencesUniversity of CaliforniaRiverside
  3. 3.Seagram Center for Soil and Water SciencesThe Hebrew UniversityRehovotIsrael
  4. 4.Statistical Consulting Service, USDA-ARSUniversity of Maryland/USDABeltsville
  5. 5.Soil Microbial Systems LaboratoryUSDA-ARSBeltsville

Personalised recommendations