Paläontologische Zeitschrift

, 81:267 | Cite as

The “inoceramus limpet”Gigantocapulus problematicus (Nagao & Otatume, 1938) in New Zealand (Late Cretaceous Gastropoda or Monoplacophora, Gigantocapulidae n. fam.)



Limpets up to at least 200 mm long occur widely in New Zealand early Haumurian (Campanian) rocks. Three specimens are in life position, attached to articulated specimens ofIsognomon. The limpet has several unique characters — an apparently anterior marginal apex (all gastropod limpets have a central or posterior apex), an enormously thickened apical area, and a tongue-like projection, with a gape at each side, below the margin at the anterior — demonstrating that it belongs inGigantocapulus Hayami & Kanie. The low shape, weak sculpture, and marginal apex indicate that it belongs inG. problematicus (Nagao & Otatume), previously reponed only from Japan and Kamchatka. New Zealand material supports previous interpretations that the apex was anterior, and thatGigantocapulus was an epiparasite or, more probably, a filter feeder living sedentarily on bivalves. The shell is, uniquely, composed of calcite in multiple complex crossed-lamellar layers, very different from the aragonite shell with inner nacreous and outer prismatic layers of both early Palaeozoic and present-day tergomyans. Nevertheless, as the anteriori?) tongue-like projection, thickening and gapes closely resemble those of early Palaeozoic tergomyans, no other limpet-shaped molluscs are known with an anterior apex, and not all modem monoplacophorans are minute (Neopilina reaches at least 40 mm long), a position in Monoplacophora (= Tergomya) remains a possibility. However,G. giganteus (Schmidt) has a subcentral apex and is clearly cyclomyan rather than tergomyan.Gigantocapulus is probably a vanikoroidean gastropod, but could also be a tergomyan, a helcionelloidan, or a member of another, now extinct group of gastropods. Gigantocapulidae n. fam. is proposed.


Gigantocapulus Helcionelloida Monoplacophora Tergomya Gastropoda Late Cretaceous Campanian New Zealand 


Napfschalen von bis zu 200 mm Länge sind in Neuseeland in Gesteinen des frühen Haumuriums (Campanium) weit verbreitet. Drei Exemplare befinden sich in Lebendstellung, angeheftet an artikulierten Exemplaren vonIsognomon. Die Napfschalen haben mehrere einzigartige Merkmale — einen scheinbar anterioren randlichen Apex (alle Napfschnecken haben einen zentralen oder posterioren Apex), einen kräftig verdickten apikalen Bereich und einen zungenförmigen Vorsprung, mit seitlich klaffenden Öffnungen, unterhalb des Randes an der Vorderseite — die belegen, dass sie zuGigantocapulus Hayami & Kanie gehören. Die flache Form, schwache Skulptur und der randliche Apex zeigen, dass die Schalen zuG. problematicus (Nagao & Otatume) gehören, welcher bisher nur von Japan und Kamtschatka bekannt war. Neuseeländisches Material bekräftigt bisherige Interpretationen, nach denen der Apex vorne liegt und dassGigantocapulus ein Epiparasit oder, wahrscheinlicher, ein Filtrierer war, der sesshaft auf Muscheln lebte. Die Schale besteht, einzigartigerweise, aus mehreren kalzitischen komplexen Kreuzlamellen-Schichten und ist damit sehr verschieden von den aragonitischen Schalen mit innerer Perlmuttschicht und äußerer Prismenschicht, wie sie von frühpaläozoischen und rezenten Tergomya bekannt sind. Dennoch bleibt eine Position innerhalb der Monoplacophora (= Tergomya) möglich, da ein anteriorer(?) zungenartiger Vorsprung, Verdickung und seitliche Öffnungen den frühpaläozoischen Tergomya ähneln und nicht alle modernen Monoplacophoren winzig sind (Neopilina wird mindestens 40 mm lang).Gigantocapulus giganteus (Schmidt) hat jedoch einen subzentralen Apex und ist sicher cyclomyid und nicht tergomyid.Gigantocapulus ist möglicherweise eine vanikoroide Schnecke, könnte aber auch zu den Tergomya, den Helcionelloida oder einer ausgestorbenen Schneckengruppe gehören. Gigan tocapulidae n. fam. wird aufgestellt.


Gigantocapulus Helcionelloida Monoplacophora Tergomya Gastropoda Ober-Kreide Campanium Neuseeland 


  1. Beu, A.G. 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1. Revised generic positions and recognition of warm-water and cool-water migrants. — Journal of the Royal Society of New Zealand34: 111–265.Google Scholar
  2. Bouchet, P.;McLean, J.H. &Warén, A. 1983. Monoplacophorans in the North Atlantic. — Oceanologica Acta6: 117–118.Google Scholar
  3. Bouchet, P.;Rocroi, J.P.;Frýda, J.;Hausdorf, B.;Ponder, W.;Valdés, A. &Warén, A. 2005. Classification and nomenclátor of gastropod families. — Malacologia47: 1–397 [distributor of this issue: Hackenheim (ConchBooks)].Google Scholar
  4. Burn, R. 1959. Comments on the Australian umbraculacean Mollusca. — Journal of the Malacological Society of Australia1 (3): 28–30.Google Scholar
  5. Burn, R. 1960. OnTylodina corticalis (Tate), a rare opisthobranch from south-eastern Australia. — Journal of the Malacological Society of Australia1 (4): 64–69.Google Scholar
  6. Burn, R. 1973. Pearson Island expedition 1969 — 10. Opisthobranchs. — Transactions of the Royal Society of South Australia97: 201–205.Google Scholar
  7. Clarke, A.H. &Menzies, R.J. 1959.Neopilina (Verna) ewingi, a second living species of the Paleozoic class Monoplacophora. — Science129: 1026–1027.CrossRefGoogle Scholar
  8. Conrad, T.A. 1860. Descriptions of new species of Cretaceous and Eocene fossils of Mississippi and Alabama. — Journal of the Academy of Natural Sciences of Philadelphia (2)4: 275–298 [not seen].Google Scholar
  9. Cooper, R.A., ed., 2004. The New Zealand geological time scale. — Institute of Geological and Nuclear Sciences Monograph22: 1–284.Google Scholar
  10. Cossmann, M. 1895. Essais de paléoconchologie comparée, vol. 1. — 159 p., Paris (M. Cossmann).Google Scholar
  11. Cossman, M. 1901. Essais de paléoconchologie comparée, vol. 4. — 293 p., Paris (M. Cossmann).Google Scholar
  12. Cox, L.R. &Knight, J.B. 1960. Suborder Patellina. — In:Moore, R.C., ed., Treatise on invertebrate paleontology. Part I, Mollusca1: 1231–1237, New York and Lawrence/Kansas (Geological Society of America and University of Kansas Press).Google Scholar
  13. Crampton, J.S. 1988. Comparative taxonomy of the bivalve families Isognomonidae, Inoceramidae, and Retroceramidae. — Palaeontology31: 965–996.Google Scholar
  14. Crampton, J.S. 1996. Inoceramid bivalves from the Late Cretaceous of New Zealand. — Institute of Geological and Nuclear Sciences Monograph14: 1–188.Google Scholar
  15. Crampton, J.S. &Moore, P.R. 1990. Environment of deposition of the Maungataniwha Sandstone (Late Cretaceous), Te Hoe River area, western Hawke’s Bay, New Zealand. — New Zealand Journal of Geology and Geophysics33: 333–348.Google Scholar
  16. Crampton, J.S.;Mumme, T.;Raine, L.;Roncaglia, L.;Schiøler, P.;Strong, P.;Turner, G. &Wilson, G. 2000. Revision of the Piripauan and Haumurian local stages and correlation of the Santonian-Maastrichtian (Late Cretaceous) in New Zealand. — New Zealand Journal of Geology and Geophysics43: 309–333.Google Scholar
  17. Crampton, J.S.;Schiøler, P. &Roncaglia, L. 2006. Detection of Late Cretaceous eustatic signatures using quantitative biostratigraphy. — Geological Society of America Bulletin118: 975–990.CrossRefGoogle Scholar
  18. Crosse, H. 1858. Diagnoses de coquilles nouvelles. — Revue et Magasin de Zoologie (2)10: 81.Google Scholar
  19. Dacqué, E. 1933. — In:Gürich, G., Wirbellose des Jura. — Leitfossilien7: 1–272 [not seen].Google Scholar
  20. Dieni, I. 1990.Brunonia annulata (Yokoyama, 1890) (Carinariidae, Mesogastropoda) nel Cretaceo inferiore della Sardegna. — Bollettino della Società Paleontologica Italiana29: 43–51.Google Scholar
  21. Dundo, O.P. &Efremova, V.I. 1974. Field atlas of the Senonian index fossils of the northeastern part of the Koryak Highlands. — 28 p., Leningrad (Scientific Research Institute of Arctic Geology) [in Russian],Google Scholar
  22. Eudes-Deslongchamps, J.A. 1842. Mémoire sur les patelles, ombrelles, calyptrées, fissurelles, émarginules et dentales fossiles des terrains secondaires du Calvados. — Mémoires de la Société Linnéenne de Normandie7: 111–130 [not seen].Google Scholar
  23. Garrard, T.A. 1961. Mollusca collected by MV “Challenge“ off the east coast of Australia. — Journal of the Malacological Society of Australia1 (7): 42–46.Google Scholar
  24. Gray, J.E. 1840. Shells of molluscous animais. — In: Synopsis of the Contents of the British Museum, ed. 42, second printing: 106–156, London (British Museum (Natural History)).Google Scholar
  25. Habe, T. 1967. A new capulid snail,Capulus spondylicola, from Japan. — Venus26: 37–38.Google Scholar
  26. Harper, J.A. &Rollins, H.B. 1985. Recognition of Monoplacophora and Gastropoda in the fossil record: a functional morphological look at the bellerophont controversy. — Proceedings of the Third North American Paleontological Convention, Montreal, August 19821: 227–232.Google Scholar
  27. Hayami, I. &Kanie, T. 1977. A systematic survey of the Paleozoic and Mesozoic Gastropoda and Paleozoic Bivalvia from Japan. — The University Museum, University of Tokyo, Bulletin13: 1–154.Google Scholar
  28. Hayami, I. &Kanime, T. 1980. Mode of life of a giant capulid gastropod from the Upper Cretaceous of Saghalien and Japan. — Palaeontology23: 689–698.Google Scholar
  29. Horný, R. 1965. On the systematic position ofCyrtolites Conrad, 1838. — Sbornik Geologicky Ved Paleontologie134: 8–10.Google Scholar
  30. Kaim, A. &Sztajner, P. 2005. The opercula of neritopsid gastropods and their phylogenetic importance. — Journal of Molluscan Studies71: 211–219.CrossRefGoogle Scholar
  31. Kanie, Y. 1975. Some Cretaceous patelliform gastropods from the northern Pacific region. — Science Reports of the Yokosuka City Museum21: 1–44.Google Scholar
  32. Kanie, Y. 1977. Succession of the Cretaceous patelliform gastropods in the northern Pacific region. — In:Matsumoto, T., ed., Mid-Cretaceous events — Hokkaido symposium, 1976. — Palaeontological Society of Japan Special Papers21: 53–62.Google Scholar
  33. Kanie, Y. 1983. Occurrences of some Cretaceous limpets in the Pacific and the U.S. western interior regions. — Science Reports of the Yokosuka City Museum31: 9–14.Google Scholar
  34. Kase, T. 1988. ReinterpretationBrunonia annulata (Yokoyama) as an Early Cretaceous carinariid mesogastropod (Mollusca). — Journal of Paleontology62: 766–771.Google Scholar
  35. Knight, J.B. 1941. Paleozoic gastropod genotypes. — Geological Society of America Special Papers32: 1–510.Google Scholar
  36. Knight, J.B. &Yochelson, E.L. 1960. Monoplacophora. — In:Moore, R.C., ed., Treatise on invertebrate paleontology. Part I, Mollusca1: 177–184, New York and Lawrence/Kansas (Geological Society of America and University of Kansas Press).Google Scholar
  37. Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. — Acta Palaeontologica Polonica45: 119–150.Google Scholar
  38. Lemche, H. 1957. A new living deep-sea mollusc of the Cambro-Devonian Class Monoplacophora. — Nature179: 413–416.CrossRefGoogle Scholar
  39. Lindström, G. 1880. Fragmenta Silurica. Opus studio N.P. Angelin inchoatum; curavit G. Lindström. — 60 p., Stockholm (Kongliga Svenska Vetenskaps-Akademiens) [not seen].Google Scholar
  40. Lindström, G. 1884. On the Silurian Gastropoda and Pteropoda of Gotland. — Kongliga Svenska Vetenskaps-Akademiens Handlingar19: 1–250.Google Scholar
  41. Linnaeus, C. von 1758. Systema naturae per regna tria naturae... editto decima, reformata. Tomus 1. — 823 p., Holmiae (L. Salvii) [facsimile reprint, London, British Museum (Natural History), 1956].Google Scholar
  42. MacClintock, C. 1967. Shell structure of patelloid and bellerophontoid gastropods (Mollusca). — Peabody Museum of Natural History, Yale University Bulletin22: 1–140.Google Scholar
  43. Marshall, B.A. 1990.Micropilina tangaroa, a new monoplacophoran (Mollusca) from northern New Zealand. — The Nautilus104: 105–107.Google Scholar
  44. Marshall, B.A. 2006. Four new species of Monoplacophora (Mollusca) from the New Zealand region. — Molluscan Research26: 61–68.Google Scholar
  45. Marwick, J. 1926. Cretaceous fossils from Waiapu Subdivision. — New Zealand Journal of Science and Technology8: 397–382.Google Scholar
  46. Meek, F.B. &Hayden, F.V. 1860. Systematic catalogue with Synonyma, of Jurassic, Cretaceous and Tertiary fossils collected in Nebraska, by the exploring expeditions under the command of Lieut. G. K. Warren, of U. S. Topographical Engineers. — Proceedings of the Academy of Natural Sciences of Philadelphia12: 417–432 [not seen].Google Scholar
  47. Meenakshi, V.;Hare, P.;Watabe, N.;Wilbur, K. &Menzies, R. 1970. Ultrastructure, histochemistry, and amino acid composition of the shell ofNeopilina. — Anton Bruun Reports2: 1–12.Google Scholar
  48. Menzies, R.J.;Ewing, M.;Worzel, J.L. &Clarke, A.H. 1959. Ecology of the Recent Monoplacophora. — Oikos10: 168–182.CrossRefGoogle Scholar
  49. Michael, R. 1899. Über Kreidefossilien von der Insel Sakhalin. — Jahrbuch der Königlich Preussischen Geologischen Landesanstalt18: 153–164 [not seen],Google Scholar
  50. Montfort, D. de 1810. Conchyliologie systématique, ou classification des méthodique des coquilles... Tome second. Coquilles univalves, non cloisonnées. — 676 p., Paris (F. Schoell).Google Scholar
  51. Morris, J. &Lycett, J. 1851. A monograph of the Mollusca from the Great Oolite. Part 1, Univalves. — 130 p., London (Palaeontographical Society Monograph).Google Scholar
  52. Morton, B. &Morton, J.E. 1983. The sea shore ecology of Hong Kong. — Hong Kong (Hong Kong University Press) [not seen].Google Scholar
  53. Müller, G. 1898. Die Molluskenfauna des Untersenon von Braunschweig und Ilsede. I. Lamellibranchiaten und Glossophoren. — Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge25: 1–142 [not seen],Google Scholar
  54. Nagao, T. &Otatume, K. 1938. Molluscan fossils of the Hakobuti Sandstone of Hokkaido. — Journal of the Faculty of Science, Hokkaido Imperial University, Series 4, Geology and Mineralogy4: 31–56.Google Scholar
  55. Newman, L. 1998. Superfamily Carinarioidea. — In:Beesley, P.L.;Ross, G.J.B. &Wells, A., eds., Mollusca, the southern synthesis. Fauna of Australia volume5: 804–808, Melbourne (CSIRO Publishing).Google Scholar
  56. Orr, V. 1962. The drilling habit ofCapulus danieli. — The Veliger5: 63–67.Google Scholar
  57. Peel, J. 1977. Relationships and internal structure of a newPilina (Monoplacophora) from the late Ordovician of Oklahoma. — Journal of Paleontology51: 116–122.Google Scholar
  58. Peel, J. 1991. Functional morphology, evolution and systematics of early Palaeozoic univalved molluscs. — Bulletin of the Geological Survey of Greenland161: 1–116.Google Scholar
  59. Peel, J. &Horný, R. 1999. Muscle scars and systematic position of the lower Palaeozoic limpetsArchinacella andBarrandiceila gen. nov. (Mollusca). — Journal of the Czech Geological Society44: 97–115.Google Scholar
  60. Perner, J. 1925. Die Gastropoden des baltischen Untersilurs. VonErnst Koken; Fortgesetzt vonJar. Perner. — Mémoires de l’Académie Impériale des Sciences de St. Petersbourg, Classe Physico-Mathématiques (8)37 (1): i-vii, 1–326 [not seen].Google Scholar
  61. Pojeta, J. 1980. Molluscan phylogeny. — Tulane Studies in Geology and Paleontology16: 55–80.Google Scholar
  62. Pojeta, J. &Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the Phylum Mollusca. — United States Geological Survey Professional Papers968: 1–88.Google Scholar
  63. Ponder, W.F. 1987. The anatomy and relationships of the pyramidellacean limpetAmathina tricarinata (Mollusca: Gastropoda). — Asian Marine Biology4: 1–34.Google Scholar
  64. Runnegar, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. — Alcheringa9: 245–257.CrossRefGoogle Scholar
  65. Runnegar, B. &Jell, P. 1976. Australian Middle Cambrian molluscs and their hearing on early molluscan evolution. — Alcheringa1: 109–138.CrossRefGoogle Scholar
  66. Runnegar, B. &Pojeta, J. 1974. Molluscan phylogeny: the paleontological viewpoint. — Science186: 311–317.CrossRefGoogle Scholar
  67. Schmidt, M.F. 1873. Über die Petrefakten der Kreideformation von Insel Sachalin. — Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg (7)19 (3): 1–37 [not seen].Google Scholar
  68. Schmidt, W. 1959. Bemerkungen zur Schalenstruktur vonNeopilina galatheae. — Galathea Reports3: 73–78.Google Scholar
  69. Sharman, M. 1956. Note onCapulus ungaricus. — Journal of the Marine Biological Association of the United Kingdom35: 445–450.Google Scholar
  70. Shigeta, Y.;Maeda, H.;Uemura, K. &Solov’yov, A.S. 1999. Stratigraphy of the Upper Cretaceous System in the Kril’on Peninsula, South Sakhalin, Russia. — Bulletin of the National Science Museum, Tokyo (C)25: 1–27.Google Scholar
  71. Sohl, N.F. 1960. Archaeogastropoda, Mesogastropoda and stratigraphy of the Ripley, Owl Creek, and Prairie Bluff Formations. — United States Geological Survey Professional Papers331-A: 1–151.Google Scholar
  72. Sohl, N.F. 1967. Upper Cretaceous gastropods from the Pierre Shale at Red Bird, Wyoming. — United States Geological Survey Professional Papers393-B: B1-B46.Google Scholar
  73. Stanicic, J. 1998. Order Basommatophora; Superfamily Siphonarioidea; Superfamily Trimuseuloidea. — In:Beesley, P.L.;Ross, G.J.B. &Wells, A., eds., Mollusca, the southern synthesis. Fauna of Australia volume5: 1067–1075, 1078–1079, Melbourne (CSIRO Publishing).Google Scholar
  74. Stanley, G.D. &Kanie, Y. 1985. The first Mesozoic chondrophorine (medusoid hydrozoan) from the Lower Cretaceous of Japan. — Palaeontology28: 101–109.Google Scholar
  75. Stephenson, L.W. 1941. The larger invertebrate fossils of the Navarro Group of Texas. — Texas University Bulletin4101: 1–641.Google Scholar
  76. Tendal, O.S. 1985. Xenophyophores (Protozoa, Sarcodina) in the diet ofNeopilina galatheae (Mollusca, Monoplacophora), — Galathea Report16: 95–98.Google Scholar
  77. Tokioka, T. &Baba, K. 1964. Four new species and a new genus pf the family Gastropteridae from Japan. — Publications of the Seto Marine Biological Laboratory12: 201–229 [not seen].Google Scholar
  78. Wade, B. 1926. The fauna of the Ripley Formation on Coon Creek, Tennessee. — United States Geological Survey Professional Papers137: 1–272.Google Scholar
  79. Wägele, H.;Vonnemann, V. &Rudman, W.B. 2006.Umbraculum umbraculum (Lightfoot, 1786) (Gastropoda, Opisthobranchia, Tylodinoidea) and the synonymy ofU. mediterraneum (Lamarck, 1812). — In:Brodie, G.;Fahey, S. &Wells, F.E., eds., Contemporary studies into the systematics and evolution of opisthobranch molluscs. — Records of the Western Australian Museum, Supplement69: 69–82.Google Scholar
  80. Wahlman, G.P. 1992. Middle and Upper Ordovician symmetrical univalved mollusks (Monoplacophora and Bellerophontina) of the Cincinnati arch region. — United States Geological Survey Professional Papers1066-O: 1–213.Google Scholar
  81. Warén, A. 1980. Revision of the generaThyca, Stilifer, Scalenostoma, Mucronalia andEchineulima (Mollusca, Prosobranchia, Eulimidae). — Zoologica Scripta9: 187–210.CrossRefGoogle Scholar
  82. Warén, A. 1988.Neopilina goesi, a new Caribbean monoplacophoran mollusc dredged in 1869. — Proceedings of the Biological Society of Washington101: 676–681.Google Scholar
  83. Warén, A. &Bouchet, P. 1990.Laevipilina rolani, a new monoplacophoran from off southwestern Europe. — Journal of Molluscan Studies56: 449–453.CrossRefGoogle Scholar
  84. Warén, A. &di Paco, G. 1996. Redescription ofAnidolyta duebeni (Lovén), a little known notaspidean gastropod. — Bollettino Malacologico32: 19–26.Google Scholar
  85. Warén, A. &Gofas, S. 1996. A new species of Monoplacophora, redescription of the generaVeleropilina andRokopella, and new information on three species of the class. — Zoologica Scripta25: 215–232.CrossRefGoogle Scholar
  86. Warren, G. &Speden, I. 1978. The Piripauan and Haumurian stratotypes (Mata Series, Upper Cretaceous) and correlative sequences in the Haumuri Bluff district, South Marlborough. — New Zealand Geological Survey Bulletin92: 1–60.Google Scholar
  87. Wellman, H.W. 1959. Divisions of the New Zealand Cretaceous. — Transactions of the Royal Society of New Zealand87: 99–163.Google Scholar
  88. Wenz, W. 1938–1944. Gastropoda. Teil 1: Allgemeiner Teil und Prosobranchia. — In:Schindewolf, O.H., ed., Handbuch der Paläozoologie, Vol. 6: xii + 1639 p, Berlin (Gebrüder Borntraeger) [p. 1–480, 1938; 481–720, 1939; 721–960, 1940; 961–1200, 1941; 1201–1506, 1943; 1507–1639, i–xii, 1944; reprint 1960–1961, Berlin (Gebrüder Borntraeger)].Google Scholar
  89. Whiteaves, J.F. 1903. Mesozoic fossils volume I. Part V (& last). — On some additional fossils from the Vancouver Cretaceous, with a revised list of the species therefrom. — 309–416, Ottawa (Geological Survey of Canada).Google Scholar
  90. Wingstrand, K.G. 1985. On the anatomy and relationships of Recent Monoplacophora. — Galathea Reports16: 7–94.Google Scholar
  91. Woods, H. 1917. The Cretaceous faunas of the north-eastern part of the South Island of New Zealand. — New Zealand Geological Survey Palaeontological Bulletin4: 1–41.Google Scholar
  92. Yochelson, E.L. 1978. An alternative approach to the interpretation of the phylogeny of ancient mollusks. — Malacologia17: 165–191.Google Scholar
  93. Yochelson, E.L. 1979. Early radiation of Mollusca and mollusc-like groups. — In:House, M.R., ed., The origin of the major invertebrate groups: 323–358, New York (Académie Press).Google Scholar
  94. Yokoyama, M. 1890. Versteinerungen aus der Japanischen Kreide. — Palaeontographica36: 159–202 [not seen].Google Scholar
  95. Yonge, C.M. 1938. Evolution of ciliary feeding in the Prosobranchia, with an account of feeding inCapulus ungaricus. — Journal of the Marine Biological Association of the United Kingdom22: 453–468.CrossRefGoogle Scholar
  96. Yonge, C.M. 1960. General characters of Mollusca. — In:Moore, R.C., ed., Treatise on invertebrate paleontology. Part I, Mollusca1: 13–136, New York and Lawrence/Kansas (Geological Society of America and University of Kansas Press).Google Scholar
  97. Zilch, A. 1959–1960. Gastropoda von Wilhelm Wenz. Teil 2. Euthyneura. — In:Schindewolf, O.H., ed., Handbuch der Paläozoologie, Vol. 6. Pt. 2: xii + 834 p, Berlin (Borntraeger) [p. 1–400, 1959; 401–834, i–xii, 1960],Google Scholar
  98. Zonova, T.D. 1985. Peculiarities of the structure of the Shell of radially ribbed inoceramids and limpet gastropods of the Campanian of the northern Pacific area. — Annual of the Ali-Union Paleontological Society28: 134–147 [in Russian].Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2007

Authors and Affiliations

  1. 1.GNS ScienceLower HuttNew Zealand

Personalised recommendations