Biotechnology and Bioprocess Engineering

, Volume 10, Issue 5, pp 451–461 | Cite as

DNA microarray analysis onSaccharomyces cerevisiae under high carbon dioxide concentration in fermentation process

  • Keisuke Nagahisa
  • Toshiharu Nakajima
  • Katsunori Yoshikawa
  • Takashi Hirasawa
  • Yoshio Katakura
  • Chikara Furusawa
  • Suteaki Shioya
  • Hiroshi Shimizu


The effect of carbon dioxide on yeast growth was investigated during the cultivation of pH 5.0 and pH 6.8, by replacing the nitrogen part with carbon dioxide under aerobic conditions. The values of the specific growth rate under pH 5.0 and pH 6.8 conditions became 64.0% and 46.9%, respectively, compared to those before the change in gas composition. This suggests that the effect of carbon dioxide was greater pronounced in pH 6.8 than in pH 5.0. The genome-wide transcriptional response to elevated carbon dioxide was examined using a DNA microarray. As for upregulated genes, it was noteworthy that 3 genes were induced upon entry into a stationary phase and 6 genes were involved in stress response. Of 53 downregulated genes, 22 genes were involved in the ribosomal biogenesis and assembly and 5 genes were involved in the lipid metabolism. These facts suggest that carbon dioxide could bring the cell conditions partially to a stationary phase. TheALD6 gene encoding for cytosolic acetaldehyde dehydrogenase was downregulated, which would lead to a lack to a lack of cell components for the growth. The downregulation ofALD6 was greater in pH 6.8 than in pH 5.0, consistent with physiological response. This suggests that it might be the most effective factor for growth inhibition.


carbon dioxide Saccharomyces cerevisiae transcriptome growth inhibition ALD6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jones, R. P. and P. F. Greenfield (1982) Effect of carbon dioxide on yeast growth and fermentation.Enzyme Microb. Technol. 4: 210–223.CrossRefGoogle Scholar
  2. [2]
    Chen, S. L. and F. Gutmanis (1976) Carbon dioxide inhibition of yeast growth in biomass production.Biotechnol. Bioeng. 18: 1455–1462.CrossRefGoogle Scholar
  3. [3]
    Norton, J. S. and R. W. Krauss (1972) The inhibition of cell division inSaccharomyces cerevisiae (Meyen) by carbon dioxide.Plant Cell Physiol. 13: 139–149.Google Scholar
  4. [4]
    Shen, H. Y., S. De Schrijver, N. Moonjai, K. J. Verstrepen, F. Delvaux, and F. R. Delvaux (2004) Effects of CO2 on the formation of flavour volatiles during fermentation with immobilised brewer’s yeast.Appl. Microbiol. Biotechnol. 64: 636–643.CrossRefGoogle Scholar
  5. [5]
    Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeast.Mol. Biol. Rev. 66: 300–372.CrossRefGoogle Scholar
  6. [6]
    Piper, P. W. (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.FEMS Microbiol. Lett. 134: 121–127.CrossRefGoogle Scholar
  7. [7]
    Ikner, A. and K. Shiozaki (2003) Yeast signaling pathways in the oxidative stress response.Mutation Res. 569: 13–27.Google Scholar
  8. [8]
    Estruch, F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast.FEMS Microbiol. Rev. 24: 469–486.CrossRefGoogle Scholar
  9. [9]
    Goffeau, A., B. G. Barrell, H. Busseyet al. (1996) Life with 6000 genes.Science 274: 563–567.CrossRefGoogle Scholar
  10. [10]
    Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher (1998) Comprehensive identification of cell cycle-regulated genes of the yeastSaccharomyces cerevisiae by microarray hybridization.Mol. Biol. Cell 9: 3273–3297.Google Scholar
  11. [11]
    Kohrer, K. and H. Domdey (1991) Preparation of high molecular weight RNA.Methods Enzymol. 194: 398–415.CrossRefGoogle Scholar
  12. [12]
    Yang, I. V., E. Chen, J. P. Hasseman, W. Liang, B. C. Frank, S. Wang, V. Sharov, A. I. Saeed, J. White, J. Li, N. H. Lee T. J. Yeatman, and J. Quackenbush (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays.Genome Biol. 3: research0062.1-0062.12.Google Scholar
  13. [13]
    Cherry, J. M., C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng, and D. Botstein (1998) SGD:Saccharomyces genome database.Nucleic Acids Res. 26: 73–79.CrossRefGoogle Scholar
  14. [14]
    Kuriyama, H., W. Mahakarnchanakul, and S. Matsui (1993) The effect of pCO2 on yeast growth and metabolism under continuous fermentation.Biotechnol. Lett. 15: 189–194.CrossRefGoogle Scholar
  15. [15]
    Hirasawa, T., Y. Nakakura, K. Yoshikawa, K. Ashitani, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu, and S. Shioya (2005) Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains ofSaccharomyces cerevisiae with DNA microarray.Appl. Microbiol. Biotechnol. In press.Google Scholar
  16. [16]
    Peng, Z. Y., R. J. Trumbly, and E. M. Reimann (1990) Purification and characterization of glycogen synthase from a glycogen-deficient strain ofSaccharomyces cerevisiae.J. Biol. Chem. 265: 13871–13877.Google Scholar
  17. [17]
    Hwang, P. K., S. Tugendreich, and R. J. Fletterick (1989) Molecular Analysis ofGPHI, the Gene Encoding Glycogen Phosphorylase inSaccharomyces cerevisiae.Mol. Cell. Biol. 9: 1659–1666.Google Scholar
  18. [18]
    Clifton, D., R. B. Walsh, and D. G. Fraenkel (1993) Functional studies of yeast glucokinase.J. Bacteriol. 175: 3289–3294.Google Scholar
  19. [19]
    Marchase, R. B., P. Bounelis, L. M. Brumley, N. Dey, B. Browne, D. Auger, T. A. Fritz, P. Kulesza, and D. M. Bedwell (1993) Phosphoglucomutase inSaccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase.J. Biol. Chem. 268: 8341–8349.Google Scholar
  20. [20]
    Riou, C., J. M. Nicaud, P. Barre, and C. Gaillardin (1997) Stationary-phase gene expression inSaccharomyces cerevisiae during wine fermentation.Yeast 13: 903–915.CrossRefGoogle Scholar
  21. [21]
    Donalies, U. E. and U. Stahl (2001) Phase-specific gene expression inSaccharomyces cerevisiae. using maltose as carbon source under oxygen-limiting conditions.Curr. Genet. 39: 150–155.CrossRefGoogle Scholar
  22. [22]
    Unnikrishnan, L., S. Miller, M. Meinke, and D. C. LaPorte (2003) Multiple positive and negative elements involved in the regulation of expression ofGSY1 inSaccharomyces cerevisiae.J. Biol. Chem. 278: 26450–26457.CrossRefGoogle Scholar
  23. [23]
    Werner-Washburne, M., E. Braun, G. C. Johnston, and R. A. Singer (1993) Stationary phase in the yeastSaccharomyces cerevisiae.Microbiol. Rev. 57: 383–401.Google Scholar
  24. [24]
    Destruelle, M., H. Holzer, and D. J. Klionsky (1994) Identification and characterization of a novel yeast gene: theYGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation.Mol. Cell Biol. 14: 2740–2754.Google Scholar
  25. [25]
    Coleman, S. T., T. K. Fang, S. A. Rovinsky, F. J. Turano, and W. S. Moye-Rowley (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance inSaccharomyces cerevisiae.J. Biol. Chem. 276: 244–250.CrossRefGoogle Scholar
  26. [26]
    Inoue, Y., T. Matsuda, K. Sugiyama, S. Izawa, and A. Kimura (1999) Genetic analysis of glutathione peroxidase in oxidative stress response ofSaccharomyces cerevisiae.J. Biol. Chem. 274: 27002–27009.CrossRefGoogle Scholar
  27. [27]
    Hirayama, T., T. Maeda, H. Saito, and K. Shinozaki (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes ofSaccharomyces cerevisiae.Mol. Gen. Genet. 249: 127–138.CrossRefGoogle Scholar
  28. [28]
    Tuite, M. F., N. J. Bentley, P. Bossier, and I. T. Fitch (1990) The structure and function of small heat shock proteins: analysis of theSaccharomyces cerevisiae Hsp26 protein.Antonie van Leeuwenhoek 58: 147–154.CrossRefGoogle Scholar
  29. [29]
    Zu, T., J. Verna, and R. Ballester (2001) Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment ofRlm1-dependent gene expression inSaccharomyces cerevisiae.Mol. Genet. Genom. 266: 142–155.CrossRefGoogle Scholar
  30. [30]
    Lyons, T. J., N. Y. Villa, L. M. Regalla, B. R. Kupchak, A. Vagstad, and D. J. Eide (2004) Metalloregulation of yeast membrane steroid receptor homologs.Proc. Natl. Acad. Sci. USA 101: 5506–5511.CrossRefGoogle Scholar
  31. [31]
    Karpichev, I. V., L. Cornivelli, G. M. Small (2002) Multiple regulatory roles of a novelSaccharomyces cerevisiae protein, encoded byYOL002c, in lipid and phosphate metabolism.J. Biol. Chem. 277: 19609–19617.CrossRefGoogle Scholar
  32. [32]
    Johnson, D. R., L. J. Knoll, D. E. Levin, and J. L. Gordon (1994)Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-mydstoylation and cellular lipid metabolism.J. Cell Biol. 127: 751–762.CrossRefGoogle Scholar
  33. [33]
    Stukey, J. E., V. M. McDonough, and C. E. Martin (1989) Isolation and characterization ofOLE1, a gene affecting fatty acid desaturation fromSaccharomyces cerevisiae.J. Biol. Chem. 264: 16537–16544.Google Scholar
  34. [34]
    Mohamed, A. H., S. S. Chirala, N. H. Mody, W. Y. Huang, and S. J. Wakil (1988) Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived fromFAS2 gene sequence.J. Biol. Chem. 263: 12315–12325.Google Scholar
  35. [35]
    Meaden, P. G., F. M. Dickinson, A. Mifsud, W. Tessier, J. Westwater, H. Bussey, and M. Midgley (1997) TheALD6 gene ofSaccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase.Yeast 13: 1319–1327.CrossRefGoogle Scholar
  36. [36]
    Kim, K. S., M. S. Rosenkrantz, and L. Guarente (1986)Saccharomyces cerevisiae contains two functional citrate synthase genes.Mol. Cell. Biol. 6: 1936–1942.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Keisuke Nagahisa
    • 1
  • Toshiharu Nakajima
    • 2
  • Katsunori Yoshikawa
    • 1
  • Takashi Hirasawa
    • 2
  • Yoshio Katakura
    • 2
  • Chikara Furusawa
    • 1
  • Suteaki Shioya
    • 2
  • Hiroshi Shimizu
    • 1
  1. 1.Department of Bioinformatic Engineering Graduate School of Information Science and TechnologyOsaka UniversitySuita, OsakaJapan
  2. 2.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan

Personalised recommendations