Cell Biophysics

, 18:99 | Cite as

Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis

  • D. Needham


Studies that examine the shear- and abrasion-sensitivity of proliferating cells are important in order to understand the behavior of hybridoma cells in bioreactor culture and metastasizing cancer cells in the bloodstream. Little is known about the link between morphology, structure, and mechanical properties of a given cell line, especially with respect to variations throughout the cell cycle. In our experiments with GAP A3 hybridoma cells, distinct cell morphologies were identified and correlated with phases of the cell cycle by video microscopic observation of synchronized cells, and of individual cells that were followed throughout their cell cycle. Micropipet manipulation was used to measure the geometrical (cell volume) and mechanical (apparent cell viscosity) properties of single cells. As the cell cycle progressed at 37°C, an increase in cell volume from 1400 μm3 to 5700 μm3 was accompanied by an increase in apparent cell viscosity from 430 poise to 12,000 poise, consistent with an accumulation of more cytoplasmic material in the “older” cells. Hybridomas are representative of the various leukemias derived from hemopoietic cells, and even though as a whole, they appeared to be rather shear-insensitive, the wide range of property values demonstrates that a given cell line cannot be characterized by a single value for any one property, and that properties must be related to the cell cycle when considering proliferating cells. It is interesting to see if distinct stages in the metastatic sequence of events might correlate with any of these physical features of the cell cycle, irrespective of cell type or cell line. For example, the cytokinetic doublet could represent a fragile structure that may fail and produce cell death under fluid-shear conditions that would not affect the cells at any other stage in the cell cycle. Identifying such cell cycle-dependent features in metastasizing cancer cells could lead to a better understanding of the metastatic process and to possible clinical treatments directed at making cells more shear- and abrasion-sensitive, and therefore, more likely to be killed by the natural hydrodynamic forces of the circulatory system.

Index Entries

Proliferating cells cell cycle cell morphology cell volume cell mechanics tumor metastasis tumor microvasculature tumor blood flow 


  1. 1.
    Weiss, L. (1985),Principles of Metastasis Academic Press, Orlando, FL.Google Scholar
  2. 2.
    Nicholson, G. L. (1988),Biochim. Biophys. Acta 948, 175.Google Scholar
  3. 3.
    Weiss, L., Harlos, J. P., Elkin, G., and Bixler, B. (1990),Cell Biophys. 16, 149–159.PubMedGoogle Scholar
  4. 4.
    Ward, K. A., Li, W.-I., Zimmer, S., and Davis, T. (1991),Biorheology 28, 301–313.PubMedGoogle Scholar
  5. 5.
    Nicholson, G. L. and Hug, V. (1990),Oncol Case Rep. Rev. 5, 1–11.Google Scholar
  6. 6.
    Cherry, R. S. and Papoutsakis, E. T. (1988),Biotechnol. Bioeng. 32, 1001.PubMedCrossRefGoogle Scholar
  7. 7.
    Croughan, M. S. and Wang, D. I. C. (1990),Biotechnol. Bioeng. 33, 731.CrossRefGoogle Scholar
  8. 8.
    Petersen, J. F., McIntire, L. V., and Papoutsakis, E. T. (1988),J. Biotechnol 7, 229.CrossRefGoogle Scholar
  9. 9.
    Petersen, J. F., Mclntire, L. V., and Papoutsakis, E. T. (1990),Biotechnol. Prog. 6, 114.PubMedCrossRefGoogle Scholar
  10. 10.
    Dodge, T. C. and Hu, W. S. (1986),Biotechnol. Lett. 8, 683.CrossRefGoogle Scholar
  11. 11.
    Cherry, R. S. and Papoutsakis, E. T. (1986),Bioproc. Eng. 1, 29.CrossRefGoogle Scholar
  12. 12.
    Handa, A., Emery, A. N., and Spier, R. E. (1987),Dev. Biol. Std. 66, 241.Google Scholar
  13. 13.
    Handa-Corrigan, A., Emery, A. N., and Spier, R. E. (1989),Enzyme Microbiol Technol. 11, 230.CrossRefGoogle Scholar
  14. 14.
    Cherry, R. S. and Papoutsakis, E. T. (1989),Bioproc. Eng. 4, 81.CrossRefGoogle Scholar
  15. 15.
    Oh, S. K. W., Al-Rubeai, M., Emery, A. N., and Nienow, A. W. (1989),Advances in Animal Cell Biology and Technology for Bioprocesses (European Society for Animal Cell Technology 9th Meeting), J. B. G. R. E. Spier J. Stephenne and J. P. Crooy, eds., pp. 221.Google Scholar
  16. 16.
    Passini, C. A. and Goochee, C. F. (1989),Biotechnol. Prog. 5, 175.CrossRefGoogle Scholar
  17. 17.
    Needham, D., Ting-Beall, H. P., and Tran-Son-Tay, R. (1991),Biotech. Bioeng. 38, 838–852.CrossRefGoogle Scholar
  18. 18.
    Tran-Son-Tay, R. (1991),Physical Forces and the Mammalian Cell J. A. Frangos and C. L. Ives, eds., Academic Press, in press.Google Scholar
  19. 19.
    Evans, E. and Skalak, R. (1980),Mechanics and Thermodynamics of Biomembranes CRC, Boca Raton, FL.Google Scholar
  20. 20.
    Berk, D. A., Hochmuth, R. M., and Waugh, R. E. (1989),Red Blood Cell Membranes. Structure, Function, Clincial Applications P. Agre and J. C. Parker, eds., Marcel Dekker, Inc., New York and Basel, pp. 423–454.Google Scholar
  21. 21.
    Evans, E. (1988),Physical Basis of Cell-Cell Adhesion P. Bongrand, ed. CRC Press, Boca Raton, FL.Google Scholar
  22. 22.
    Evans, E. and Yeung, A. (1989),Biophys. J. 56, 151–160.PubMedGoogle Scholar
  23. 23.
    Yueng, A. and Evans, E. (1989),Biophys. J. 56, 139–149.Google Scholar
  24. 24.
    Needham, D. and Hochmuth, R. M. (1990),J. Biomech. Eng. 112, 269–276.PubMedCrossRefGoogle Scholar
  25. 25.
    Dong, C., Skalak, R., Sung, K.-L., Schmid-Schonbein, G. W., and Chein, S. (1988),J. Biomech. Eng. 110, 27–36.PubMedGoogle Scholar
  26. 26.
    Warnke, K. C. and Skalak, T. C. (1991),J. Biomech. Eng. in press.Google Scholar
  27. 27.
    Tran-Son-Tay, R., Needham, D., Yeung, A., and Hochmuth, R. M. (1991),Biophys. J. 60, 856–866.PubMedGoogle Scholar
  28. 28.
    Schmid-Schonbein, G. W., Shih, Y. Y., and Chien, S. (1980),Blood 56, 866–875.PubMedGoogle Scholar
  29. 29.
    Schröder, S., Palinski, W., and Schmid-Schönbein, G. W. (1991),Am. J. Pathol. 139, 81–100.PubMedGoogle Scholar
  30. 30.
    Hall, E. L. (1988),Radiobiology for the Radiologist J. B. Lippincott Co., Philadelphia, PA.Google Scholar
  31. 31.
    Woodruff, M. (1990),Cellular Variation and Adaptation in Cancer Oxford University Press, Oxford, UK.Google Scholar
  32. 32.
    Weiss, L. (1980),Pathobiol. Ann. 10, 51–81.Google Scholar
  33. 33.
    Larizza, L., Schirrmacher, V., Graf, L., Pflüger, E., Perez-Martinez, M., and Stöhr, M. (1984),Int. J. Cancer 34, 699–707.PubMedCrossRefGoogle Scholar
  34. 34.
    Schirrmacher, V. (1986),Deutsches Krebsforschungszentrum, Current Cancer Research Deutsches Krebsforschungszentrum, Steinkopff Darmstadt, Springer Verlag, New York.Google Scholar
  35. 35.
    Weiss, L. (1979),Am. J. Path. 97, 601–608.PubMedGoogle Scholar
  36. 36.
    Knutton, S., Sumner, M. C. B., and Pasternak, C. A. (1975),J. Cell Biol. 66, 568.PubMedCrossRefGoogle Scholar
  37. 37.
    Hatcher, V. B., Werthiem, M. S., Rhee, C. Y., Tsien, G., and Burk, P. G. (1976),BBA 451, 499–510.PubMedGoogle Scholar
  38. 38.
    Jirtle, R. L. (1988),Int. J. Hyperthermia 4, 355–371.PubMedCrossRefGoogle Scholar
  39. 39.
    Dewhirst, M. W., Tso, C. Y., Oliver, R., Gustafson, C., Secombe, T., and Gross, J. F. (1989),Int. J. Radiat. Oncol 17, 91–99.Google Scholar
  40. 40.
    Dewhirst, M. W., Oliver, R., Tso, C. Y., Gustafson, C., Secombe, T., and Gross, J. F. (1990),Int. J. Radiat. Oncol Biol Phys. 18, 559–568.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • D. Needham
    • 1
  1. 1.Department of Mechanical Engineering and Materials Science, and the Center for Biochemical EngineeringDuke UniversityDurham

Personalised recommendations