Skip to main content
Log in

Curable and noncurable malignancies:Lessons from paediatric cancer

  • Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The tremendous progress achieved in understanding the molecular basis of cancer, was unfortunately not followed by a mutual improvement in the morbidity and mortality of adult cancer. In contrast, the success rate achieved in paediatric oncology has increased significantly during the past 30 years, and more than two-thirds of the children with cancer can now be cured. p53 has been shown to have a central role on apoptosis in various cells. As apoptosis is a final common pathway for much of our anti cancer therapy, resistance to apoptosis due to a normal activity of p53 is an important mechanism of tumor resistance and treatment failure. Contrary to the findings in most adult tumors, where about 50% of the tumors lack p53 activity, the rate of p53 mutations in childhood cancer is surprisingly low. This may be the key to the much better prognosis of children with cancer. In most adult tumors, multiple genetic events, between five and seven, are usually involved. The oncogenes involved in such tumors usually represent those located upstream of the nuclear transcription factors. In most paediatric tumors, in contrast, the initiating event is the activation of nuclear transcription factors secondary to chromosomal translocations. It can be speculated that multiple events activating various components of the signal transduction machinery are needed for tumorigenesis, and hence the evolution and progression of such tumors is slow. Moreover, if the malignant cell has to accumulate multiple mutations, the chances of crippling the apoptotic mechanism are higher. Genomic instability evidenced by microsatellite variation has been found in colon, pancreas, breast, liver and ovarian adult tumors, and not in paediatric tumors. As multiple somatic mutations are needed for the initiation and progression of the common adult malignancies, inherent genomic instability can dispose to accumulation of multiple mutations. All these molecular interactions are discussed with relevance to the difference between non-curable, mostly adult tumors, and curable, mostly paediatric tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Howley, P.M. (1995) Viral carcinogenesis. In J. Mendelshon, P.M. Howley, M.A. Israel and L.A. Liotta (eds)The Molecular Basis of Cancer, pp. 38–85. Philadelphia: WB Saunders.

    Google Scholar 

  2. Marx, J. (1994) DNA repair cornes into its own.Science 266, 728–30.

    Article  PubMed  CAS  Google Scholar 

  3. Buck, C.A. (1995) Adhesion mechanisms controlling cell-cell and cell-matrix interactions during the metastatic process. In J. Mendelshon, P.M. Howley, M.A. Israel and L.A. Liotta (eds)The Molecular Basis of Cancer, pp. 172–205. Philadelphia: WB Saunders.

    Google Scholar 

  4. Folkman, J. (1995) Tumor angiogenesis. In J. Mendelshon, P.M. Howley, M.A. Israel and L.A. Liotta (eds)The Molecular Basis of Cancer, pp. 206–32. Philadelphia: WB Saunders.

    Google Scholar 

  5. Lange,T. (1994) Activation of telomerase in a human tumor.Proc. Natl. Acad. Sci. USA 91, 2882–5.

    Article  PubMed  Google Scholar 

  6. Beardsley, T. (1994) A war not won.Scientific American 118–126.

  7. Robison, L.L. (1993) General principles of the epidemiology of childhood cancer. In P.A. Pizzo and D.G. Poplack (eds)Principles and Practice of Pediatric Oncology, 2nd edn, pp. 3–10. Philadelphia: JB Lippincott.

    Google Scholar 

  8. Greaves, M.F. (1993) Stem cell origin of leukemia and curability.Br. J. Cancer 67, 413–23.

    PubMed  CAS  Google Scholar 

  9. Williams, G.T. and Smith, C.A. (1993) Molecular regulation of apoptosis: genetic controls on cell death.Cell 74, 777–9.

    Article  PubMed  CAS  Google Scholar 

  10. Raff, M.C. (1992) Social controls on cell survival and cell death.Nature 356, 397–400.

    Article  PubMed  CAS  Google Scholar 

  11. Wyllie, A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation.Nature 284, 555–6.

    Article  PubMed  CAS  Google Scholar 

  12. Gavrieli, Y., Sherman, Y. and Ben-Sasson, A. (1992) Identification of programmed cell deathin situ via specific labeling of nuclear DNA fragmentation.J. Cell. Biol. 119, 493–502.

    Article  PubMed  CAS  Google Scholar 

  13. Ellis, R.E., Yuan, J. and Horvitz, H.R. (1991) Mechanisms of functions of cell death.Ann. Rev. Cell Biol. 7, 663–98.

    PubMed  CAS  Google Scholar 

  14. Yonish-Rouach, E., Resnitzky, D., Lotem, T., Sachs, L., Kimchi, A. and Oren, M. (1991) Wild type p53 induces apoptosis of myeloid leukemia cells that is inhibited by interleukin 6.Nature 353, 345–7.

    Article  Google Scholar 

  15. Clarke, A.R., Purdie, C.A., Harrison, DJ., Morris, R.G., Bird, C.C., Hooper, M.L. and Wyllie, A.H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways.Nature 362, 849–52.

    Article  PubMed  CAS  Google Scholar 

  16. El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W. and Voglestein, B. (1993) WAF1, a potential mediator of p53 tumor suppression.Cell 75, 817–25.

    Article  PubMed  CAS  Google Scholar 

  17. Pines, J. (1994) Cell cycle. p21 inhibits cyclin shock.Nature 369, 520–1.

    Article  PubMed  CAS  Google Scholar 

  18. Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Beverly, S.P., Vogelstein, B. and For-ance, A J. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia- telangiectasia.Cell 71, 587–97.

    Article  PubMed  CAS  Google Scholar 

  19. Caelles, C, Helmberg, A. and Karin, M. (1994) P53 dependent apoptosis in the absence of transcriptional activation of p53 target genes.Nature 370, 220–3.

    Article  PubMed  CAS  Google Scholar 

  20. Harris, C.C. and Hollstein, M. (1993) Clinical implications of the p53 tumor-suppressor gene.N. Eng. J. Med. 329, 1318–27.

    Article  CAS  Google Scholar 

  21. Stretch, J.R., Gatter, K.C., Ralfkiaer, E., Lane, D. and Harris, A.L. (1991) Expression of mutant p53 in melanoma.Cancer Res. 51, 5976–9.

    PubMed  CAS  Google Scholar 

  22. Takahashi, T., Suzuki, H., Hida, T., Sekido, Y., Ariyoshi, Y. and Udea, R. (1991) The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern.Oncogene 6, 1775–8.

    PubMed  CAS  Google Scholar 

  23. Fearon, E.R. and Voglstein, B. (1990) A genetic model for colorectal tumorigenesis.Cell 61, 759–67.

    Article  PubMed  CAS  Google Scholar 

  24. Sidransky, D., Von Eschenbach, A., Tsai, Y.C., Jones, P., Summerhayes, I., Marshall, F., Paul, M., Green, P., Hamilton, S.R., Frost, P. and Vogelstein, B. (1991) Identification of p53 gene mutations in bladder cancers and urine samples.Science 252, 706–9.

    Article  PubMed  CAS  Google Scholar 

  25. Isaacs, W.B., Carter, B.S. and Ewing, C.M. (1991) Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles.Cancer Res. 51, 4716–20.

    PubMed  CAS  Google Scholar 

  26. Crook, T., Wrede, D., Tidy, J.A., Mason, W.P., Evans, D.J. and Vousden, K.H. (1992) Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus- negative tumors.Lancet 339, 1070–3.

    Article  PubMed  CAS  Google Scholar 

  27. Fisher, D.E. (1994) Apoptosis in cancer therapy: crossingthe threshold.Cell 78, 539–42.

    Article  PubMed  CAS  Google Scholar 

  28. Lowe, S.W., Bodis, S., McClatchey, A., Remington, L., Ruley, H.E., Fisher, D.E., Housman, D.E. and Jacks, T. (1994) p53 status and the efficacy of cancer therapyin vivo.Science 266, 807–10.

    Article  PubMed  CAS  Google Scholar 

  29. Damerron, K.M., Volpert, O.V., Tainsky, M.A. and Bouck, N.P. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin.Science 265, 1582–4.

    Article  Google Scholar 

  30. Chin, K.V., Ueda, K., Pastan, L. and Gottesman, M.M. (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53.Science 255, 459–62.

    Article  PubMed  CAS  Google Scholar 

  31. Korsmeyer, S.J., Shutter, J.R., Veis, DJ., Merry, D.E. and Oltvai, Z.N. (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death.Sem. Cancer Biol. 4, 327–32.

    CAS  Google Scholar 

  32. Offit, K., Lo Coco, F., Louise, L., Parsa, N.Z., Leung, D., Portlock, C, Ye, B.H., Lista, F., Filippa, D.A., Rosen-baum, A., Landanyi, M., Jhanwar, S., Dalla-Favera, R. and Chaganti, R.S.K. (1994) Rearrangement of the bcl-6 as a prognostic marker in diffuse large cell lymphoma.N. Eng. J. Med. 331, 74–80.

    Article  CAS  Google Scholar 

  33. Wada, M., Bartram, C.R., Nakamura, H., Hachiya, M., Chen, D.L., Borenstein, J., Miller, C.W., Ludwig, L., Hansen-Hagge, T.E., Ludwig, W.F., Reiter, A., Mizoguchi, H. and Koeffler, P. (1993) Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood.Blood 82, 3163–9.

    PubMed  CAS  Google Scholar 

  34. Saylors, R.L., Sidransky, D. III and Friedman, H.S. (1991) Infrequent p53 gene mutations in medulloblastomas.Cancer Res. 52, 4721–5.

    Google Scholar 

  35. Hickman, J.A. and Pritchard, J. (1994) Why does stage 4s neuroblastoma regress spontaneously?Lancet 344, 869–70.

    Article  PubMed  Google Scholar 

  36. Tronick, S.R. and Aaronson, S.A. (1995) Growth factors and signal transduction. In J. Mendelshon, P.M. Howley, M.A. Israel and L.A. Liotta (eds)The Molecular Basis of Cancer, pp. 117–140. Philadelphia: WB Saunders.

    Google Scholar 

  37. Fearson, E.R. (1995) Molecular abnormalities in colon and rectal cancer. In J. Mendelshon, P.M. Howley, M.A. Israel and L.A. Liotta (eds)The Molecular Basis of Cancer, pp. 340–57. Philadelphia: WB Saunders.

    Google Scholar 

  38. Rabbitts, T.H. (1994) Chromosomal translocations in human cancer.Nature 372, 143–9.

    Article  PubMed  CAS  Google Scholar 

  39. Knudson, A.G. (1993) Antioncogenes and human cancer.Proc. Natl. Acad. Sci. USA 90, 10914–21.

    Article  PubMed  CAS  Google Scholar 

  40. Sawyers, C.L. and Denny, C.T. (1994) Chronic myelomo-nocytic leukemia:Tel-a-kinase what it’s all about.Cell 77, 171–3.

    Article  PubMed  CAS  Google Scholar 

  41. Darnell, J.E., Kerr, I.M. and Stark, G.R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signalling proteins.Science 264, 1415–21.

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien, C. (1994) Missing link in Insulin’s path to protein production.Science 28, 542–3.

    Article  Google Scholar 

  43. Murray, A. (1994) Cell cycle checkpoints.Curt. Op. Cell. Biol. 6, 872–6.

    Article  CAS  Google Scholar 

  44. Elledge, S.J. and Harper, J.W. (1994) Cdk inhibitors: on the threshold of checkpoints and development.Curt. Op. Cell Biol. 6, 847–52.

    Article  CAS  Google Scholar 

  45. Kamb, A., Gruis, N.A., Weaver, F.J., Liu, Q., Harshman, K., Tavtigian, S.V., Stocket, E., Day, R.S., III, Johnson, B.E. and Skolnick, M.H. (1994) A cell cycle regulator potentially involved in genesis of many tumor types.Science 264, 436–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toren, A., Amariglio, N. & Rechavi, G. Curable and noncurable malignancies:Lessons from paediatric cancer. Med Oncol 13, 15–21 (1996). https://doi.org/10.1007/BF02988837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988837

Keywords

Navigation