Annals of Nuclear Medicine

, 16:437 | Cite as

Neuroreceptor imaging in psychiatric disorders



Molecular imaging, the study of receptors, transporters and enzymes, as well as other cellular processes, has grown in recent years to be one of the most active neuroimaging areas. The application of single photon emission tomography (SPECT) and positron emission tomography (PET) techniques to the study of psychiatric illness has lead to increased understanding of disease processes as well as validated,in vivo, theories of illness etiology. Within the field of psychiatry these techniques have been applied most widely to the study of schizophrenia. Studies within schizophrenia are largely limited to either the dopamine or serotonin system. This is due in large part to the availability of suitable radiotracers as well as the current theories on the etiology of the illness. Two basic study designs are used when studying schizophrenia using molecular imaging and make up the majority of studies reviewed in this manuscript. The first type, termed “clinical studies,” compares the findings from PET and SPECT studies in those with schizophrenia to normal controls in an attempt to understand the pathophysiology of the illness. The second study design, termed “occupancy studies,” uses these techniques to enhance the understanding of the mechanism of action of the medications used in treating this illness. This review will focus on the findings of molecular imaging studies in schizophrenia, focusing, for the most part, on the serotonin and dopamine systems. Emphasis will be placed on how these findings and techniques are currently being used to inform the development of novel treatments for schizophrenia.

Key words

PET SPECT schizophrenia dopamine serotonin 


  1. 1.
    Rossum V. The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs.Arch Int Pharmacodyn Therapy 1966; 160: 492–494.Google Scholar
  2. 2.
    Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain.Acta Pharmacol Toxicol 1963; 20: 140–144.Google Scholar
  3. 3.
    Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs.Science 1976; 19: 481–483.CrossRefGoogle Scholar
  4. 4.
    Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays.Proc Natl Acad Sci USA 1975; 72 (11): 4376–4380.PubMedCrossRefGoogle Scholar
  5. 5.
    Weinberger DR, Laruelle M. Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis KL, Charney DS, Coyle JT, Nemeroff C, editors.neuropharmacology—The Fifth Generation of Progress. Lippincott, Williams, and Wilkins, 2001.Google Scholar
  6. 6.
    Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, et al. Positron Emission Tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics.Science 1986; 234: 1558–1563.PubMedCrossRefGoogle Scholar
  7. 7.
    Crawley JC, Owens DG, Crow TJ, Poulter M, Johnstone EC, Smith T, et al. Dopamine D2 receptors in schizophrenia studiedin vivo.Lancet 1986; 2 (8500): 224–225.PubMedCrossRefGoogle Scholar
  8. 8.
    Blin J, Baron JC, Cambon H, Bonnet AM, Dubois B, Loc’h C, et al. Striatal dopamine D2 receptors in tardive dyskinesia: PET study.J Neurol Neurosurg Psychiatry 1989; 52 (11): 1248–1252.PubMedCrossRefGoogle Scholar
  9. 9.
    Martinot J-L, Peron-Magnan P, Huret J-D, Mazoyer B, Baron J-C, Boulenger J-P, et al. Striatal D2 dopaminergic receptors assessed with positron emission tomography and76Br-bromospiperone in untreated patients.Am J Psychiatry 1990; 147: 346–350.Google Scholar
  10. 10.
    Tune LE, Wong DF, Pearlson G, Strauss M, Young T, Shaya EK, et al. Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with11C-N-methylspiperone.Psychiatry Research 1993; 49 (3): 219–237.PubMedCrossRefGoogle Scholar
  11. 11.
    Nordstrom AL, Farde L, Eriksson L, Halldin C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone [see comments].Psychiatry Res 1995; 61 (2): 67–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET.Nature 1997; 385 (6617): 634–636.PubMedCrossRefGoogle Scholar
  13. 13.
    Farde L, Wiesel F, Stone-Elander S, Halldin C, Nordsröm AL, Hall H, et al. D2 dopamine receptors in neurolepticnaive schizophrenic patients. A positron emission tomography study with [11C]raclopride.Arch Gen Psychiatry 1990; 47: 213–219.PubMedGoogle Scholar
  14. 14.
    Hietala J, Syvälahti E, Vuorio K, Nagren K, Lehikoinen P, Ruotsalainen U, et al. Striatal D2 receptor characteristics in neuroleptic-naive schizophrenic patients studied with Positron Emission Tomography.Arch Gen Psychiatry 1994; 51: 116–123.PubMedGoogle Scholar
  15. 15.
    Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Murray RM, Kerwin RW. D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An I-123-IBZM single photon emission computerized tomography study.Br J Psychiatry 1994; 164: 16–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, De Souza CD, Erdos J, et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects.Proc Natl Acad Sci USA 1996; 93: 9235–9240.PubMedCrossRefGoogle Scholar
  17. 17.
    Knable MB, Egan MF, Heinz A, Gorey J, Lee KS, Coppola R, et al. Altered dopaminergic function and negative symptoms in drug-free patients with schizophrenia. [123I]-iodobenzamide SPECT study.Br J Psychiatry 1997; 171: 574–577.PubMedCrossRefGoogle Scholar
  18. 18.
    Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method.Proc Natl Acad Sci USA 1997; 94 (6): 2569–2574.PubMedCrossRefGoogle Scholar
  19. 19.
    Abi-Dargham A, Gil R, Krystal J, Baldwin R, Seibyl J, Bowers M, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort.Am J Psychiatry 1998; 155: 761–767.PubMedGoogle Scholar
  20. 20.
    Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles L, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.Proc Natl Acad Sci USA 2000; 97 (14): 8104–8109.PubMedCrossRefGoogle Scholar
  21. 21.
    Martinot JL, Paillère-Martinot ML, Loc’h C, Hardy P, Poirier MF, Mazoyer B, et al. The estimated density of D2 striatal receptors in schizophrenia. A study with positron Emission tomography and76Br-bromolisuride.Br J Psychiatry 1991; 158: 346–350.PubMedCrossRefGoogle Scholar
  22. 22.
    Martinot JL, Paillère-Martinot ML, Loc’h C, Lecrubier Y, Dao-Castellana MH, Aubin F, et al. Central D2 receptors and negative symptoms of schizophrenia.Br J Pharmacol 1994; 164: 27–34.Google Scholar
  23. 23.
    Seeman P, Guan H-C, Niznik HB. Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: Implications for positron emission tomography of the human brain.Synapse 1989; 3: 96–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Seeman P. Brain dopamine receptors in schizophrenia: PET problems.Arch Gen Psychiatry 1988; 45: 598–560.PubMedGoogle Scholar
  25. 25.
    Karlsson P, Farde L, Halldin C, Sedvall G. D1-dopamine receptors in schizophrenia examined by PET.Schizophrenia Res 1997; 24: 179.Google Scholar
  26. 26.
    Abi-Dargham A, Gil R, Mawlawi O, Hwang DR, Kochan L, Lombardo I, et al. Selective alteration in D1 receptors in schizophrenia: a PETin vivo study.J Nucl Med 2001; 42: 17P.Google Scholar
  27. 27.
    Laruelle M. Imaging synaptic neurotransmission within vivo binding competition techniques: a critical review.J Cereb Blood Flow Metab 2000; 20 (3): 423–451.PubMedCrossRefGoogle Scholar
  28. 28.
    Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases.Biol Psychiatry 1999; 46 (1): 56–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Hwang D, Kegeles LS, Laruelle M. (−)-N-[(11)C]propylnorapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.Nucl Med Biol 2000; 27 (6): 533–539.PubMedCrossRefGoogle Scholar
  30. 30.
    Laruelle M, D’Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, et al. Imaging D-2 receptor occupancy by endogenous dopamine in humans.Neuropsychopharmacology 1997; 17 (3): 162–174.PubMedCrossRefGoogle Scholar
  31. 31.
    Fujita M, Verhoeff NP, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA, et al. Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans.Eur J Pharmacol 2000; 387 (2): 179–188.PubMedCrossRefGoogle Scholar
  32. 32.
    Halldin C, Farde L, Hogberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors.J Nucl Med 1995; 36 (7): 1275–1281.PubMedGoogle Scholar
  33. 33.
    Mukherjee J, Yang ZY, Das MK, Brown T. Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer.Nucl Med Biol 1995; 22 (3): 283–296.PubMedCrossRefGoogle Scholar
  34. 34.
    Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, et al. Elevated dopa decarboxylase activity in living brain of patients with psychosis.Proc Natl Acad Sci USA 1994; 91: 11651–11654.PubMedCrossRefGoogle Scholar
  35. 35.
    Hietala J, Syvalahti E, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M, et al. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients.Lancer 1995; 346 (8983): 1130–1131.CrossRefGoogle Scholar
  36. 36.
    Hietala J, Syvalahti E, Vilknan H, Vuorio K, Rakkolainen V, Bergman J, et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia.Schizophrenia Res 1999; 35 (1): 41–50.CrossRefGoogle Scholar
  37. 37.
    Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, et al. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated byl-(beta-11C) DOPA and PET.Biol Psychiatry 1999; 46 (5): 681–688.PubMedCrossRefGoogle Scholar
  38. 38.
    Dao-Castellana MH, Paillere-Martinot ML, Hantraye P, Attar-Levy D, Remy P, Crouzel C, et al. Presynaptic dopaminergic function in the striatum of schizophrenic patients.Schizophrenia Res 1997; 23 (2): 167–174.CrossRefGoogle Scholar
  39. 39.
    Bannon MJ, Granneman JG, Kapatos G.The dopamine transporter: potential involvement in neuropsychiatric disorders. 1185 Ave of the Americas/New York/NY 10036; Raven Press, 1995.Google Scholar
  40. 40.
    Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D’Souza DC, Krystal J, et al. Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT.Biol Psychiatry 2000; 47 (5): 371–379.PubMedCrossRefGoogle Scholar
  41. 41.
    Laakso A, Vilknan H, Alakare B, Haaparanta M, Bergman J, Solin O, et al. Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography.Am J Psychiatry 2000; 157 (2): 269–271.PubMedCrossRefGoogle Scholar
  42. 42.
    Lavalaye J, Linszen DH, Booij J, Dingemans PM, Reneman L, Habraken JB, et al. Dopamine transporter density in young patients with schizophrenia assessed with [123IFP]-CIT SPECT.Schizophr Res 2001; 47 (1): 59–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Talvik M, Nordstrom A, Nyberg S, Olsson H, Halldin C, Farde L. No support for regional selectivity in clozapine-treated patients: A PET study with [11C]Raclopride and [11C]FLB 457.Am J Psychiatry 2001; 158: 926–930.PubMedGoogle Scholar
  44. 44.
    Pickar D, Su T, Weinberger D, Coppola R, Malhotra A, Knable M, et al. Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients.Am J Psychiatry 1996; 153 (12): 1571–1578.PubMedGoogle Scholar
  45. 45.
    Tauscher J, Kufferle B, Asenbaum S, Fischer P, Pezawas L, Barnas C, et al.In vivo 123I IBZM SPECT imaging of striatal dopamine-2 receptor occupancy in schizophrenic patients treated with olanzapine in comparison to clozapine and haloperidol.Psychpharmacology 1999; 141: 175–181.CrossRefGoogle Scholar
  46. 46.
    Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central tral D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects.Arch Gen Psychiatry 1992; 49 (7): 538–544.PubMedGoogle Scholar
  47. 47.
    Nordstrom AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients.Am J Psychiatry 1995; 152 (10): 1444–1449.PubMedGoogle Scholar
  48. 48.
    Remington G, Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: Bridging basic clinical findings using PET.J Clin Psychiatry 1999; 60 (10): 15–19.PubMedGoogle Scholar
  49. 49.
    Kapur S, Zipursky R, Remington G, Jones C, DaSilva J, Wilson A, et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: A PET investigation.Am J Psychiatry 1998; 155 (7): 921–928.PubMedGoogle Scholar
  50. 50.
    Lavalaye J, Linszen D, Booij J, Reneman L, Gersons B, Royen E. Dopamine D2 receptor occupancy by olanzapine or risperidone in young patients with schizophrenia.Psychiatric Research 1999; 92: 33–44.CrossRefGoogle Scholar
  51. 51.
    Nordstrom AL, Nyberg S, Olsson H, Farde L. Positron emission tomography finding of a high striatal D2 receptor occupancy in olanzapine-treated patients.Arch Gen Psychiatry 1998; 55 (3): 283–284.PubMedCrossRefGoogle Scholar
  52. 52.
    Dresel S, Mager T, Rossmuller B, Meisenzahl E, Hahn K, Moller HJ, et al.In vivo effects of olanzapine on striatal dopamine D(2)/D(3) receptor binding in schizophrenic patients: an iodine-123 iodobenzamide single-photon emission tomography study.Eur J Nucl Med 1999; 26 (8): 862–868.PubMedCrossRefGoogle Scholar
  53. 53.
    Raedler TJ, Knable MB, Lafargue T, Urbina RA, Egan MF, Pickar D, et al.In vivo determination of striatal dopamine D2 receptor occupancy in patients treated with olanzapine.Psychiatry Res 1999; 90 (2): 81–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Remington G, Kapur S, Zipursky R. The relationship between risperidone plasma levels and dopamine D2 occupancy: A positron emission tomographic study.J Clin Psychophamacol 1998; 18 (1): 82–83.CrossRefGoogle Scholar
  55. 55.
    Nyberg S, Eriksson B, Oxenstierna G, Halldin C, Farde L. Suggested minimal effective dose of risperidone based on PET-Measured D2 and 5′HT2A receptor occupancy in schizophrenia patients.ACTA Psychiatrica Scandinavica 1999; 156 (6): 869–875.Google Scholar
  56. 56.
    Knable M, Heinz A, Raedler T, Wienberger D. Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels.Psychiatric Research 1997; 75: 91–101.CrossRefGoogle Scholar
  57. 57.
    Gefvert O, Lundberg T, Wieselgren I, Bergstrom M, Langstrom B, Wiesel F, et al. D2 and 5HT2a receptor occupancy of different doses of quetiapine in schizophrenia: a PET study.European Neuropsychopharmacology 2001; 11: 105–110.PubMedCrossRefGoogle Scholar
  58. 58.
    Kufferle B, Tauscher J, Asenbaum S, Vesely C, Podreka I, Brucke T, et al. IBZM SPECT imaging of striatal dopamine-2 receptors in psychotic patients treated with the novel antipsychotic substance quetiapine in comparison to clozapine and haloperidol.Psychopharmacology 1997; 133: 323–328.PubMedCrossRefGoogle Scholar
  59. 59.
    Kapur S, Zipursky R, Jones C, Shammi C, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia.Arch Gen Psychiatry 2000; 57: 553–559.PubMedCrossRefGoogle Scholar
  60. 60.
    Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis.Am J Psychiatry 2001; 158 (3): 360–369.PubMedCrossRefGoogle Scholar
  61. 61.
    Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization.Am J Psychiatry 1991; 148: 1474–1486.PubMedGoogle Scholar
  62. 62.
    Weinberger DR. Implications of the normal brain development for the pathogenesis of schizophrenia.Arch Gen Psychiatry 1987; 44: 660–669.PubMedGoogle Scholar
  63. 63.
    Goldman-Rakic PS, Muly EC 3rd, Williams GV. D(1) receptors in prefrontal cells and circuits.Brain Res Brain Res Rev 2000; 31 (2–3): 295–301.PubMedCrossRefGoogle Scholar
  64. 64.
    De Keyser J, Ebinger G, Vauquelin G. Evidence for a widespread dopaminergic innervation of the human cerebral neocortex.Neurosci Lett 1989; 104: 281–285.PubMedCrossRefGoogle Scholar
  65. 65.
    Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.Neuropsychopharmacology 1994; 11: 245–256.PubMedGoogle Scholar
  66. 66.
    Aghajanian GK, Marek G. Serotonin model of schizophrenia: emerging role of glutamate mechanisms.Brain Res Brain Res Rev 2000; 31 (2–3): 302–312.PubMedCrossRefGoogle Scholar
  67. 67.
    Abi-Dargham A, Krystal J. Serotonin receptors as target of antipsychotic medications. In: Lidow MS, editor.Neurotransmitter receptors in actions of antipsychotic medications. Boca Raton, FL; CRC Press LLC, 2000: 79–107.Google Scholar
  68. 68.
    Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, Wilson AA, et al. Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects.Am J Psychiatry 1999; 156 (1): 72–78.PubMedGoogle Scholar
  69. 69.
    Trichard C, Paillere-Martinot ML, Attar-Levy D, Blin J, Feline A, Martinot JL. No serotonin 5-HT2A receptor density abnormality in the cortex of schizophrenic patients studied with PET.Schizophr Res 1998; 31 (1): 13–17.PubMedCrossRefGoogle Scholar
  70. 70.
    Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, et al. Serotonin 5-HT2 receptors in schizophrenic patients studied by positron emission tomography.Life Sci 2000; 66 (25): 2455–2464.PubMedCrossRefGoogle Scholar
  71. 71.
    Ngan ET, Yatham LN, Ruth TJ, Liddle PF. Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: A PET study using [18F] setoperone.Am J Psychiatry 2000; 157 (6): 1016–1018.PubMedCrossRefGoogle Scholar
  72. 72.
    Suehiro M, Scheffel U, Ravert HT, Dannals RF, Wagner H Jr. [11C](+)McN5652 as a radiotracer for imaging serotonin uptake sites with PET.Life Sci 1993; 53 (11): 883–892.PubMedCrossRefGoogle Scholar
  73. 73.
    Szabo Z, Scheffel U, Suehiro M, Dannals RF, Kim SE, Ravert HT, et al. Positron emission tomography of 5-HT transporter sites in the baboon brain with [11C]McN5652.J Cereb Blood Flow Metab 1995; 15 (5): 798–805.PubMedGoogle Scholar
  74. 74.
    Szabo Z, Scheffel U, Mathews WB, Ravert HT, Szabo K, Kraut M, et al. Kinetic analysis of [11C]McN5652: a serotonin transporter radioligand.J Cereb Blood Flow Metab 1999; 19 (9): 967–981.PubMedCrossRefGoogle Scholar
  75. 75.
    Parsey RV, Kegeles LS, Hwang DR, Simpson N, Abi-Dargham A, Mawlawi O, et al.In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652.J Nucl Med 2000; 41 (9): 1465–1477.PubMedGoogle Scholar
  76. 76.
    Buck A, Gucker PM, Schonbachler RD, Arigoni M, Kneifel S, Vollenweider FX, et al. Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods.J Cereb Blood Flow Metab 2000; 20 (2): 253–262.PubMedCrossRefGoogle Scholar
  77. 77.
    Oya S, Choi S, Hou C, Mu M, Kung M, Acton PD, et al. 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand.Nucl Med Biol 2000: 27 (3); 249–254.PubMedCrossRefGoogle Scholar
  78. 78.
    Emond P, Vercouillie J, Innis R, Chalon S, Mavel S, Frangin Y, et al. Substituted diphenyl sulfides as selective serotonin transporter ligands: synthesis andin vitro evaluation.J Med Chem 2002; 45 (6): 1253–1258.PubMedCrossRefGoogle Scholar
  79. 79.
    Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, andin vitro andex vivo evaluation of (11)C-labeled 2-(phenylthio)araalkylamines.J Med Chem 2000; 43 (16): 3103–3110.PubMedCrossRefGoogle Scholar
  80. 80.
    Houle S, Ginovart N, Hussey D, Meyer J, Wilson A. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB.Eur J Nucl Med 2000; 27 (11): 1719–1722.PubMedCrossRefGoogle Scholar
  81. 81.
    Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs.Psychopharmacol Bull 1989; 25 (3): 390–392.PubMedGoogle Scholar
  82. 82.
    Meltzer HY. The role of serotonin in antipsychotic drug action.Neuropsychopharmacology 1999; 21 (2 Suppl): 106S-115S.PubMedGoogle Scholar
  83. 83.
    Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients.Am J Psychiatry 1998; 155 (4): 505–508.PubMedGoogle Scholar
  84. 84.
    Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia.Am J Psychiatry 1999; 156 (2): 286–293.PubMedGoogle Scholar
  85. 85.
    Kapur S, Zipursky R, Remington G, Jones C, McKay G, Houle S. PET evidence that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications for the therapeutics of schizophrenia.Am J Psychiatry 1997; 154 (11): 1525–1529.PubMedGoogle Scholar
  86. 86.
    Singh AN, Barlas C, Singh S, Franks P, Mishra RK. A neurochemical basis for the antipsychotic activity of loxapine: interactions with dopamine D1, D2, D4 and serotonin 5-HT2 receptor subtypes.J Psychiatry Neurosci 1996; 21 (1): 29–35.PubMedGoogle Scholar
  87. 87.
    Kinon BJ, Lieberman JA. Mechanisms of action of atypical antipsychotic drugs: a critical analysis.Psychopharmacology (Berl) 1996; 124 (1–2): 2–34.CrossRefGoogle Scholar
  88. 88.
    Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, et al. Serotonergic basis of antipsychotic drug effects in schizophrenia.Biol Psychiatry 1998; 44 (11): 1099–1117.PubMedCrossRefGoogle Scholar
  89. 89.
    Ichikawa J, Meltzer HY. Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs.Eur Arch Psychiatry Clin Neurosci 1999; 249 Suppl 4: 90–98.PubMedGoogle Scholar
  90. 90.
    Richelson E. Receptor pharmacology of neuroleptics: relation to clinical effects.J Clin Psychiatry 1999; 60 Suppl 10: 5–14.PubMedGoogle Scholar
  91. 91.
    Dougherty D, Alpert N, Rauch S, Fischman A, editors.In vivo neuroreceptor imaging techniques in psychiatric drug development. Washington, DC; American Psychiatric Publishing, Inc., 2001.Google Scholar
  92. 92.
    Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission.Ann NY Acad Sci 1998; 861: 204–216.PubMedCrossRefGoogle Scholar
  93. 93.
    Martinez D, Broft A, Laruelle M. Pindolol augmentation of antidepressant treatment: recent contributions from brain imaging studies.Biol Psychiatry 2000; 48 (8): 844–853.PubMedCrossRefGoogle Scholar
  94. 94.
    Artigas F, Celada P, Laruelle M, Adell A. How does pindolol improve antidepressant action?Trends Pharmacol Sci 2001; 22 (5): 224–228.PubMedCrossRefGoogle Scholar
  95. 95.
    Martinez D, Hwang D, Mawlawi O, Slifstein M, Kent J, Simpson N, et al. Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol. A doseoccupancy study with [11C]WAY 100635 and positron emission tomography in humans.Neuropsychopharmacology 2001; 24 (3): 209–229.PubMedCrossRefGoogle Scholar
  96. 96.
    Andree B, Thorberg SO, Halldin C, Farde L. Pindolol binding to 5-HT1A receptors in the human brain confirmed with positron emission tomography.Psychopharmacology (Berl) 1999; 144 (3): 303–305.CrossRefGoogle Scholar
  97. 97.
    Rabiner EA, Gunn RN, Sargent PA, Koepp M, Meyer J, Bench CJ, et al. Beta-blocker binding to brain 5HT1A receptorsin vivo—a[11C]WAY 100635 PET study.J Cereb Blood Flow Metab 1999; 19: S324.Google Scholar
  98. 98.
    Tsukada H, Harada N, Ohba H, Nishiyama S, Kakiuchi T. Facilitation of dopaminergic neural transmission does not affect [11C]SCH23390 binding to the striatal D1 dopamine receptors, but the facilitation enhances phosphodiesterase type-IV activity through D1 receptors: PET studies in the conscious monkey brain.Synapse 2001; 42 (4): 258–265.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  1. 1.Department of RadiologyColumbia University College of Physicians and Surgeons and New York State Psychiatric InstituteNew YorkUSA
  2. 2.Department of PsychiatryColumbia University, New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations