Skip to main content
Log in

Assessment ofTakotsubo (ampulla) cardiomyopathy using99mTc-tetrofosmin myocardial SPECT —Comparison with acute coronary syndrome—

  • Original Articles
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We assessedTakotsubo (ampulla) cardiomyopathy compared with acute coronary syndrome (ACS) using two-dimensional echocardiography and99mTc-tetrofosmin myocardial SPECT.Methods: We examined 10 patients withTakotsubo cardiomyopathy and 16 with ACS at the time of emergency admission (acute phase), at three to nine days after the attack (subacute phase) and at one month after the attack (chronic phase). The left ventricle was divided into nine regions on echocardiograms and SPECT images, and the degree of abnormalities in each region was scored in five grades from normal (0) to severely abnormal (4).Results: Coronary angiography revealed total or subtotal occlusion in patients with ACS but no stenotic legions in those withTakotsubo cardiomyopathy. The amount of ST segment elevation (mm) was 7.9±3.4 in patients withTakotsubo cardiomyopathy and 7.3±3.7 in those with ACS (N.S.). Abnormal wall motion scores on echocardiograms were 13.8±4.4, 4.4±3.8 and 1.8±2.3 during the acute, subacute and chronic phases in patients withTakotsubo cardiomyopathy and 13.9±4.0, 11.7±3.7, 7.6±4.2, respectively in patients with ACS. The value of MB fraction of creatine phosphokinase (IU/l) was 34±23 in patients withTakotsubo cardiomyopathy and 326±98 in those with ACS (p<0.001). Abnormal myocardial perfusion scores on99mTc-tetrofosmin myocardial SPECT were 11.4±3.2, 3.2±3.3 and 0.7±1.1 during the acute, subacute and chronic phases respectively, in patients withTakotsubo cardiomyopathy, and 15.8±4.1, 13.5±4.4, 8.2±4.4, respectively, in those with ACS. The numbers of myocardial segments that did not uptake99mTc-tetrofosmin during the acute phase were 0.5±0.8 and 3.6±2.8 in patients withTakotsubo cardiomyopathy and ACS, respectively.Conclusion: Impaired coronary microcirculation might be a causative mechanism ofTakotsubo cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawai S, Suzuki H, Yamaguchi H, Tanaka K, Sawada H, Aizawa T, et al. Ampulla cardiomyopathy (Takotsubo cardiomyopathy)—Reversible left ventricular dysfunction with ST segment elevation—Jpn Circ J 2000; 64: 156–159.

    Article  PubMed  CAS  Google Scholar 

  2. Nyui N, Yamanaka O, Nakamura R, Sawano M, Kawai S. ‘Tako-tsubo’ transient ventricular dysfunction—A case report—.Jpn Circ J 2000; 64: 715–719.

    Article  PubMed  CAS  Google Scholar 

  3. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction.J Am Coll Cardiol 2001; 38: 11–18.

    Article  PubMed  CAS  Google Scholar 

  4. Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases.J Cardiol 1991; 21: 203–214.

    PubMed  CAS  Google Scholar 

  5. Iga K, Hori K, Kitaguchi K, Matsumura T, Gen H, Tomonaga G, et al. Transient segmental asynergy of the left ventricle of patients with various clinical manifestations possibly unrelated to the coronary artery disease.Jpn Circ J 1991; 55: 1061–1067.

    PubMed  CAS  Google Scholar 

  6. Tamaki N, Takahashi N, Kawamoto M, Torizuka T, Tadamura E, Yonekura Y, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 1994; 35: 594–600.

    PubMed  CAS  Google Scholar 

  7. Veretto T, Cantalupi D, Altieri A, Orlamdi C. Emergency room technetium-99m-sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiogram.J Am Coll CArdiol 1993; 22: 1804–1808.

    Google Scholar 

  8. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction.Circulation 1982; 66: 1146–1149.

    PubMed  CAS  Google Scholar 

  9. Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium.J Am Coll Cardiol 1994; 24: 636–640.

    Article  PubMed  CAS  Google Scholar 

  10. Sakamoto H, Nishimura H, Imataka K, Ieki K, Horie T, Fuji J. Abnormal Q wave, St-segment elevation, T wave inversion and widespread focal myocytolysis associated with subarachnoid hemorrhage.Jpn Circ J 1996; 60: 254–257.

    Article  PubMed  CAS  Google Scholar 

  11. Ohtsuka T, Hamada M, Kodama K, Sasaki O, Suzuki M, Hara Y, et al. Neurogenic stunned myocardium.Circulation 2000; 101: 2122–2124.

    PubMed  CAS  Google Scholar 

  12. Shaw TRD, Bafferty P, Tait GW. Transient shock and myocardial impairment caused by pheochromocytoma.Br Heart J 1987; 57: 194–198.

    Article  PubMed  CAS  Google Scholar 

  13. Salathe M, Weiss P, Ritz R. Rapid reversible of heart failure in a patient with phaeochromocytoma and catecholamine-induced cardiomyopathy who was treated with captopril.Br Heart J 1992; 68: 527–528.

    Article  PubMed  CAS  Google Scholar 

  14. Iga K, Himura Y, Izumi C, Miyamoto T, Kijima K, Gen H, et al. Reversible left ventricular dysfunction associated with Guillain-Barré syndrome: An expression of catecholamine cardiotoxicity?.Jpn Circ J 1995; 59: 236–240.

    PubMed  CAS  Google Scholar 

  15. Kemp HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms.Am J Cardiol 1973; 32: 375–376.

    Article  PubMed  Google Scholar 

  16. Cannon RO, Epstein SE. Microvascular angina as a cause of chest pain with angiographically normal coronary arteries.Am J Cardiol 1988; 61: 1338–1343.

    Article  PubMed  Google Scholar 

  17. Sherf L, Ben-Shaul Y, Lieberman Y, Neufeld HN. The human coronary circulation: An electron microscopic study.Am J Cardiol 1977; 39: 599–607.

    Article  PubMed  CAS  Google Scholar 

  18. Guzman SV, Swenson E, Jones M. Intracoronary reflex. Demonstration by coronary angiography.Circ Res 1962; 10: 739–745.

    PubMed  CAS  Google Scholar 

  19. Hori M, Inoue M, Kitakaze M, Koresune Y, Iwai K, Tamai J, et al. Role of adenosine in hyperemic response of coronary blood flow in microembolization.Am J Physiol 1986; 250: H509–518.

    PubMed  CAS  Google Scholar 

  20. Hori M, Tamai J, Kitakaze M, Iwakura K, Rotoh K, Iwai K, et al. Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs.Am J Physiol 1989; 257: H244–251.

    PubMed  CAS  Google Scholar 

  21. Nagai H, Nakamura Y, Tanaka S, Kobayashi K. Angina pectoris associated with ST segment elevation in the absence of epicardial coronary arterial obstruction.Angiology 1994; 45: 391–397.

    Article  PubMed  CAS  Google Scholar 

  22. Serota H, Kern MJ, Deligonul U, Aguirre F, Caralis DG. Ergonovine-induced myocardial ischemia without epicardial coronary vasospasm: evidence for ischemia produced by small-vessel vasoconstriction.Am Heart J 1991; 121: 1807–1809.

    Article  PubMed  CAS  Google Scholar 

  23. Mohri M, Koyanagi M, Egashira K, et al. Angina pectoris caused by coronary microvascular spasm.Lancet 1998; 351: 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  24. Berne RM. Coronary circulation. InHandbook of Physiology. Vol. I The heart ed. by Berne RM et al., Bethesda; American Physiological Society, 1979: 873.

    Google Scholar 

  25. Hirsch EF, Broghard-Erdle AM. The innervation of the human heart. I. The coronary arteries and the myocardium.Arch Pathol 1961; 71: 384–407.

    PubMed  CAS  Google Scholar 

  26. Johansson G, Jonesson L, Lannek N, Blomgren L, Lindberg P, Poupa O. Severe stress-cardiopathy in pigs.Am Heart J 1987; 87: 451–457.

    Article  Google Scholar 

  27. Leor J, Poole WK, Kloner RA Sudden cardiac death triggered by an earthquake.N Engl J Med 1996; 334: 413–419.

    Article  PubMed  CAS  Google Scholar 

  28. Frustaci Q, Loperfido F, Gentiloni N, Caldarulo M, Morgante E, Russo MA. Catecholamine-induced cardiomyopathy in multiple endocrine neoplasia: A histologic, ultrastructural, and biochemical study.Chest 1991; 99: 382–385.

    Article  PubMed  CAS  Google Scholar 

  29. Yamabe H, Hanaoka J, Funakoshi T, Iwahashi M, Takeuchi M, Saito K, et al. Deep negative T waves and abnormal cardiac sympathetic image (123I-MIBG) after the great Hanshin earthquake of 1995.Am J Med Sci 1996; 311: 221–224.

    Article  PubMed  CAS  Google Scholar 

  30. Cebelin MS, Hirsch CS. Human stress cardiomyopathy: Myocardial lesions in victims of homicidal assaults without internal injuries.Hum Path 1980; 11: 123–132.

    Article  PubMed  CAS  Google Scholar 

  31. Ueyama T, Kasamutsu K, Hano T, Yamamoto K, Tsuruo Y, Nishino I. Emotional stress induced transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors—A possible animal model ofTako-tsubo cardiomyopathy.Jpn Circ J 2002; 66: 712–713.

    Google Scholar 

  32. Murphree SS, Saffitz JE. Quantitative autoradiograpic delineation of the distribution of beta-adrenergic receptors in canine and feline left ventricular myocardium.Cir Res 1987; 60: 568–579.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Sugihara, H., Katoh, S. et al. Assessment ofTakotsubo (ampulla) cardiomyopathy using99mTc-tetrofosmin myocardial SPECT —Comparison with acute coronary syndrome—. Ann Nucl Med 17, 115–122 (2003). https://doi.org/10.1007/BF02988449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988449

Key words

Navigation