Advertisement

Annals of Nuclear Medicine

, Volume 17, Issue 2, pp 115–122 | Cite as

Assessment ofTakotsubo (ampulla) cardiomyopathy using99mTc-tetrofosmin myocardial SPECT —Comparison with acute coronary syndrome—

  • Kazuki Ito
  • Hiroki Sugihara
  • Shuji Katoh
  • Akihiro Azuma
  • Masao Nakagawa
Original Articles

Abstract

We assessedTakotsubo (ampulla) cardiomyopathy compared with acute coronary syndrome (ACS) using two-dimensional echocardiography and99mTc-tetrofosmin myocardial SPECT.Methods: We examined 10 patients withTakotsubo cardiomyopathy and 16 with ACS at the time of emergency admission (acute phase), at three to nine days after the attack (subacute phase) and at one month after the attack (chronic phase). The left ventricle was divided into nine regions on echocardiograms and SPECT images, and the degree of abnormalities in each region was scored in five grades from normal (0) to severely abnormal (4).Results: Coronary angiography revealed total or subtotal occlusion in patients with ACS but no stenotic legions in those withTakotsubo cardiomyopathy. The amount of ST segment elevation (mm) was 7.9±3.4 in patients withTakotsubo cardiomyopathy and 7.3±3.7 in those with ACS (N.S.). Abnormal wall motion scores on echocardiograms were 13.8±4.4, 4.4±3.8 and 1.8±2.3 during the acute, subacute and chronic phases in patients withTakotsubo cardiomyopathy and 13.9±4.0, 11.7±3.7, 7.6±4.2, respectively in patients with ACS. The value of MB fraction of creatine phosphokinase (IU/l) was 34±23 in patients withTakotsubo cardiomyopathy and 326±98 in those with ACS (p<0.001). Abnormal myocardial perfusion scores on99mTc-tetrofosmin myocardial SPECT were 11.4±3.2, 3.2±3.3 and 0.7±1.1 during the acute, subacute and chronic phases respectively, in patients withTakotsubo cardiomyopathy, and 15.8±4.1, 13.5±4.4, 8.2±4.4, respectively, in those with ACS. The numbers of myocardial segments that did not uptake99mTc-tetrofosmin during the acute phase were 0.5±0.8 and 3.6±2.8 in patients withTakotsubo cardiomyopathy and ACS, respectively.Conclusion: Impaired coronary microcirculation might be a causative mechanism ofTakotsubo cardiomyopathy.

Key words

Takotsubo cardiomyopathy ampulla cardiomyopathy 99mTc-tetrofosmin microcirculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawai S, Suzuki H, Yamaguchi H, Tanaka K, Sawada H, Aizawa T, et al. Ampulla cardiomyopathy (Takotsubo cardiomyopathy)—Reversible left ventricular dysfunction with ST segment elevation—Jpn Circ J 2000; 64: 156–159.PubMedCrossRefGoogle Scholar
  2. 2.
    Nyui N, Yamanaka O, Nakamura R, Sawano M, Kawai S. ‘Tako-tsubo’ transient ventricular dysfunction—A case report—.Jpn Circ J 2000; 64: 715–719.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction.J Am Coll Cardiol 2001; 38: 11–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases.J Cardiol 1991; 21: 203–214.PubMedGoogle Scholar
  5. 5.
    Iga K, Hori K, Kitaguchi K, Matsumura T, Gen H, Tomonaga G, et al. Transient segmental asynergy of the left ventricle of patients with various clinical manifestations possibly unrelated to the coronary artery disease.Jpn Circ J 1991; 55: 1061–1067.PubMedGoogle Scholar
  6. 6.
    Tamaki N, Takahashi N, Kawamoto M, Torizuka T, Tadamura E, Yonekura Y, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 1994; 35: 594–600.PubMedGoogle Scholar
  7. 7.
    Veretto T, Cantalupi D, Altieri A, Orlamdi C. Emergency room technetium-99m-sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiogram.J Am Coll CArdiol 1993; 22: 1804–1808.Google Scholar
  8. 8.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction.Circulation 1982; 66: 1146–1149.PubMedGoogle Scholar
  9. 9.
    Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium.J Am Coll Cardiol 1994; 24: 636–640.PubMedCrossRefGoogle Scholar
  10. 10.
    Sakamoto H, Nishimura H, Imataka K, Ieki K, Horie T, Fuji J. Abnormal Q wave, St-segment elevation, T wave inversion and widespread focal myocytolysis associated with subarachnoid hemorrhage.Jpn Circ J 1996; 60: 254–257.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohtsuka T, Hamada M, Kodama K, Sasaki O, Suzuki M, Hara Y, et al. Neurogenic stunned myocardium.Circulation 2000; 101: 2122–2124.PubMedGoogle Scholar
  12. 12.
    Shaw TRD, Bafferty P, Tait GW. Transient shock and myocardial impairment caused by pheochromocytoma.Br Heart J 1987; 57: 194–198.PubMedCrossRefGoogle Scholar
  13. 13.
    Salathe M, Weiss P, Ritz R. Rapid reversible of heart failure in a patient with phaeochromocytoma and catecholamine-induced cardiomyopathy who was treated with captopril.Br Heart J 1992; 68: 527–528.PubMedCrossRefGoogle Scholar
  14. 14.
    Iga K, Himura Y, Izumi C, Miyamoto T, Kijima K, Gen H, et al. Reversible left ventricular dysfunction associated with Guillain-Barré syndrome: An expression of catecholamine cardiotoxicity?.Jpn Circ J 1995; 59: 236–240.PubMedGoogle Scholar
  15. 15.
    Kemp HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms.Am J Cardiol 1973; 32: 375–376.PubMedCrossRefGoogle Scholar
  16. 16.
    Cannon RO, Epstein SE. Microvascular angina as a cause of chest pain with angiographically normal coronary arteries.Am J Cardiol 1988; 61: 1338–1343.PubMedCrossRefGoogle Scholar
  17. 17.
    Sherf L, Ben-Shaul Y, Lieberman Y, Neufeld HN. The human coronary circulation: An electron microscopic study.Am J Cardiol 1977; 39: 599–607.PubMedCrossRefGoogle Scholar
  18. 18.
    Guzman SV, Swenson E, Jones M. Intracoronary reflex. Demonstration by coronary angiography.Circ Res 1962; 10: 739–745.PubMedGoogle Scholar
  19. 19.
    Hori M, Inoue M, Kitakaze M, Koresune Y, Iwai K, Tamai J, et al. Role of adenosine in hyperemic response of coronary blood flow in microembolization.Am J Physiol 1986; 250: H509–518.PubMedGoogle Scholar
  20. 20.
    Hori M, Tamai J, Kitakaze M, Iwakura K, Rotoh K, Iwai K, et al. Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs.Am J Physiol 1989; 257: H244–251.PubMedGoogle Scholar
  21. 21.
    Nagai H, Nakamura Y, Tanaka S, Kobayashi K. Angina pectoris associated with ST segment elevation in the absence of epicardial coronary arterial obstruction.Angiology 1994; 45: 391–397.PubMedCrossRefGoogle Scholar
  22. 22.
    Serota H, Kern MJ, Deligonul U, Aguirre F, Caralis DG. Ergonovine-induced myocardial ischemia without epicardial coronary vasospasm: evidence for ischemia produced by small-vessel vasoconstriction.Am Heart J 1991; 121: 1807–1809.PubMedCrossRefGoogle Scholar
  23. 23.
    Mohri M, Koyanagi M, Egashira K, et al. Angina pectoris caused by coronary microvascular spasm.Lancet 1998; 351: 1165–1169.PubMedCrossRefGoogle Scholar
  24. 24.
    Berne RM. Coronary circulation. InHandbook of Physiology. Vol. I The heart ed. by Berne RM et al., Bethesda; American Physiological Society, 1979: 873.Google Scholar
  25. 25.
    Hirsch EF, Broghard-Erdle AM. The innervation of the human heart. I. The coronary arteries and the myocardium.Arch Pathol 1961; 71: 384–407.PubMedGoogle Scholar
  26. 26.
    Johansson G, Jonesson L, Lannek N, Blomgren L, Lindberg P, Poupa O. Severe stress-cardiopathy in pigs.Am Heart J 1987; 87: 451–457.CrossRefGoogle Scholar
  27. 27.
    Leor J, Poole WK, Kloner RA Sudden cardiac death triggered by an earthquake.N Engl J Med 1996; 334: 413–419.PubMedCrossRefGoogle Scholar
  28. 28.
    Frustaci Q, Loperfido F, Gentiloni N, Caldarulo M, Morgante E, Russo MA. Catecholamine-induced cardiomyopathy in multiple endocrine neoplasia: A histologic, ultrastructural, and biochemical study.Chest 1991; 99: 382–385.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamabe H, Hanaoka J, Funakoshi T, Iwahashi M, Takeuchi M, Saito K, et al. Deep negative T waves and abnormal cardiac sympathetic image (123I-MIBG) after the great Hanshin earthquake of 1995.Am J Med Sci 1996; 311: 221–224.PubMedCrossRefGoogle Scholar
  30. 30.
    Cebelin MS, Hirsch CS. Human stress cardiomyopathy: Myocardial lesions in victims of homicidal assaults without internal injuries.Hum Path 1980; 11: 123–132.PubMedCrossRefGoogle Scholar
  31. 31.
    Ueyama T, Kasamutsu K, Hano T, Yamamoto K, Tsuruo Y, Nishino I. Emotional stress induced transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors—A possible animal model ofTako-tsubo cardiomyopathy.Jpn Circ J 2002; 66: 712–713.Google Scholar
  32. 32.
    Murphree SS, Saffitz JE. Quantitative autoradiograpic delineation of the distribution of beta-adrenergic receptors in canine and feline left ventricular myocardium.Cir Res 1987; 60: 568–579.Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Kazuki Ito
    • 1
  • Hiroki Sugihara
    • 2
  • Shuji Katoh
    • 1
  • Akihiro Azuma
    • 2
  • Masao Nakagawa
    • 2
  1. 1.Division of Cardiology, Murakami Memorial HospitalAsahi UniversityGifuJapan
  2. 2.Second Department of MedicineKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations