Annals of Nuclear Medicine

, Volume 15, Issue 4, pp 321–327 | Cite as

Is technetium-99m-MIBI taken up by the normal pituitary gland? A comparison of normal pituitary glands and pituitary adenomas

  • Toyoyuki Kojima
  • Sunao Mizumura
  • Shin-ichiro Kumita
  • Tatsuo Kumazaki
  • Akira Teramoto
Original Articles



The aim of this study was to compare the behavioral uptake of a normal gland and a pituitary adenoma and to assess the ability to diagnose pituitary adenoma by means of technetium-99m-hexakis-2-methoxy-isobutyl-isonitrile (MIBI) single photon emission computed tomography (SPECT).


The study included 15 patients with pituitary adenomas (mean age=44.0 years, range 19–63) and 15 control subjects (mean age=50.7 years, range 20–67). SPECT was performed 15 minutes after an intravenous injection of MIBI 600 MBq. The shape and location of MIBI uptake were evaluated on a magnetic resonance (MR) imaging/SPECT registration image. The shape patterns and location were classified as follows: Shape C (circular); LO (longitudinal oval); T/R (triangular or rectangular) and location P (pituitary gland or adenoma); D/C (dorsum sellae and/or clivus).


Analysis of the uptake showed that 10 (67%) adenomas were C, and 5 (33%) were LO. Of the controls, 5 (33%) were C, and 10 (69%) were T/R. With regard to location, all patients with pituitary adenomas were classified as P, and all control subjects (93%) but one showed uptake in the dorsum sellae and clivus (D/C).


MIBI was taken up in the dorsum sellae or clivus but not the normal pituitary gland and had a strong affinity for the pituitary adenoma. This result implies that MIBI SPECT may be a useful new auxiliary examination technique for the location diagnosis of pituitary adenoma.

Key words

adenoma pituitary gland technetium-99m-MIBI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakahara H, Noguchi S, Murakami N, Hoshi H, Jinnouchi S, Nagamachi S, et al. Technetium-99m-sestamibi scintigraphy compared with thallium-201 in evaluation of thyroid tumors.J Nucl Med 1996; 37: 901–904.PubMedGoogle Scholar
  2. 2.
    Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study).J Nucl Med 1992; 33: 1801–1807.PubMedGoogle Scholar
  3. 3.
    Yamamoto Y, Nishiyama Y, Satoh K, Takashima H, Ohkawa M, Fujita J, et al. Comparative study of technetium-99m-sestamibi and thallium-201 SPECT in predicting chemotherapeutic response in small cell lung cancer.J Nucl Med 1998; 39: 1626–1629.PubMedGoogle Scholar
  4. 4.
    Maublant J, de Latour M, Mestas D, Clemenson A, Charrier S, Feillel V, et al. Technetium-99m-sestamibi uptake in breast tumor and associated lymph nodes.J Nucl Med 1996; 37: 922–925.PubMedGoogle Scholar
  5. 5.
    Caner B, Kitapcl M, Unlu M, Erbengi G, Calikoglu T, Gogus T, et al. Technetium-99m-MIBI uptake in benign and malignant bone lesions: a comparative study with technetium-99m-MDP.J Nucl Med 1992; 33: 319–324.PubMedGoogle Scholar
  6. 6.
    O'Tuama LA, Treves ST, Larar JN, Packard AB, Kwan AJ, Barnes PD, et al. Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison.J Nucl Med 1993; 34: 1045–1051.PubMedGoogle Scholar
  7. 7.
    Sessler MJ, Geck P, Maul FD, Hor G, Munz DL. New aspects of cellular thallium uptake: Tl+-Na+-2Cl(−)-cotransport is the central mechanism of ion uptake.Nuklearmedizin 1986; 25: 24–27.PubMedGoogle Scholar
  8. 8.
    Sehweil AM, McKillop JH, Milroy R, Wilson R, Abdel-Dayem HM, Omar YT. Mechanism of201Tl uptake in tumours.Eur J Nucl Med 1989; 15: 376–379.PubMedCrossRefGoogle Scholar
  9. 9.
    Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) in cultured mouse fibroblasts.J Nucl Med 1990; 31: 1646–1653.PubMedGoogle Scholar
  10. 10.
    Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines.J Nucl Med 1996; 37: 1551–1556.PubMedGoogle Scholar
  11. 11.
    Perez-Monte JE, Brown ML, Clarke MR, Watson CG, Carty SE. Parathyroid hyperplasia, thymic carcinoid and pituitary adenoma detected with technetium-99m-MIBI in MEN type I.J Nucl Med 1997; 38: 1767–1769.PubMedGoogle Scholar
  12. 12.
    Dierckx RA, Martin JJ, Dobbeleir A, Crols R, Neetens I, De Deyn PP. Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours.Eur J Nucl Med 1994; 21: 621–633.PubMedCrossRefGoogle Scholar
  13. 13.
    Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, et al. Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy.Eur J Nucl Med 1998; 25: 1649–1657.PubMedCrossRefGoogle Scholar
  14. 14.
    Bagni B, Pinna L, Tamarozzi R, Cattaruzzi E, Marzola MC, Bagni I, et al. SPET imaging of intracranial tumours with99Tcm-sestamibi.Nucl Med Commun 1995; 16: 258–264.PubMedCrossRefGoogle Scholar
  15. 15.
    Jonsson C, Jacobsson H. Accumulation of99mTc-MIBI in bone marrow.Ann Nucl Med 1996; 10: 281–285.PubMedGoogle Scholar
  16. 16.
    Bartynski WS, Lin L. Dynamic and conventional spin-echo-MR of pituitary microlesions.AJNR 1997; 18: 965–972.PubMedGoogle Scholar
  17. 17.
    Colombo N, Loli P, Vignati F, Scialfa G. MR of corticotropin-secreting pituitary microadenomas.AJNR 1994; 15: 1591–1595.PubMedGoogle Scholar
  18. 18.
    Buchfelder M, Nistor R, Fahlbusch R, Huk WJ. The accuracy of CT and MR evaluation of the sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease.AJNR 1993; 14: 1183–1190.PubMedGoogle Scholar
  19. 19.
    Teramoto A, Yoshida Y, Sanno N, Nemoto S. Cavernous sinus sampling in patients with adrenocorticotrophic hormone-dependent Cushing's syndrome with emphasis on inter- and intracavernous adrenocorticotrophic hormone gradients.J Neurosurg 1998; 89: 762–768.PubMedCrossRefGoogle Scholar
  20. 20.
    Bergstrom M, Muhr C, Lundberg PO, Bergstrom K, Lundqvist H, Antoni G, et al. Amino acid distribution and metabolism in pituitary adenomas using positron emission tomography withd-[11C]methionine andl-[11C]methionine.J Comput Assist Tomogr 1987; 11: 384–389.PubMedCrossRefGoogle Scholar
  21. 21.
    De Souza B, Brunetti A, Fulham MJ, Brooks RA, DeMichele D, Cook P, et al. Pituitary microadenomas: a PET study.Radiology 1990; 177: 39–44.PubMedGoogle Scholar
  22. 22.
    Bergstrom M, Muhr C, Lundberg PO, Langstrom B. PET as a tool in the clinical evaluation of pituitary adenomas.J Nucl Med 1991; 32: 610–615.PubMedGoogle Scholar
  23. 23.
    van Royen EA, Verhoeff NP, Meylaerts SA, Miedema AR. Indium-111-DTPA-octreotide uptake measured in normal and abnormal pituitary glands.J Nucl Med 1996; 37: 1449–1451.PubMedGoogle Scholar
  24. 24.
    Lloreta-Trull J, Serrano S. Biology and pathology of the mitochondrion.Ultrastruct Pathol 1998; 22: 357–367.PubMedGoogle Scholar
  25. 25.
    Kimura F, Kim KS, Friedman H, Russell EJ, Breit R. MR imaging of the normal and abnormal clivus.Am Roentgenol 1990; 155: 1285–1291.Google Scholar
  26. 26.
    Wakasugi S, Teshima H, Nakamura H, Hashizume T, Maeda T, Hiraoka A, et al. Tc-99m MIBI localization in bone marrow: a marker of bone marrow malignancy.Clin Nucl Med 1998; 23: 664–671.PubMedCrossRefGoogle Scholar
  27. 27.
    Pace L, Catalano L, Pinto A, De Renzo A, Di Gennaro F, Califano C, et al. Different patterns of technetium-99m sestamibi uptake in multiple myeloma.Eur J Nucl Med 1998; 25: 714–720.PubMedCrossRefGoogle Scholar
  28. 28.
    Hashimoto M. The distribution of active marrow in the bone of normal adult.Kyushu J Med Sci 1960; 11: 103–111.Google Scholar
  29. 29.
    Zhang J, Levesque MF, Wilson CL, Harper RM, Engel J Jr, Lufkin R, et al. Multimodality imaging of brain structures for stereotactic surgery.Radiology 1990; 175: 435–441.PubMedGoogle Scholar
  30. 30.
    van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching.Med Phys 1994; 21: 1163–1178.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakajima K, Hisada K, Iida H, Seki H, Muramori A. Detectability of small hot lesions in single photon emission computed tomography: experiments using phantom and computer simulation.KAKU IGAKU (Jpn J Nucl Med) 1987; 24: 397–405. (in Japanese)Google Scholar
  32. 32.
    Togawa T, Yui N, Kinoshita F, Yanagisawa M. Quantitative evaluation in tumor SPECT and the effect of tumor size: fundamental study with phantom.Ann Nucl Med 1997; 11: 51–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Toyoyuki Kojima
    • 2
    • 1
  • Sunao Mizumura
    • 2
    • 1
  • Shin-ichiro Kumita
    • 2
    • 1
  • Tatsuo Kumazaki
    • 2
    • 1
  • Akira Teramoto
    • 2
    • 1
  1. 1.Department of RadiologyNippon Medical SchoolTokyoJapan
  2. 2.Department of NeurosurgeryNippon Medical SchoolTokyoJapan

Personalised recommendations