Paläontologische Zeitschrift

, Volume 72, Issue 1–2, pp 7–30 | Cite as

Die kambrische Explosion

  • Gerd Geyer

The Cambrian explosion


This article reviews events during the Proterozoic/ Cambrian turnover, termed the “Cambrian explosion”. The first part heralds observed stages of the organismal evolution and discusses their influence and bearing on the latest concept of the Proterozoic/Cambrian boundary. In addition, the number and extent of Cambrian fossil lagerstaetten and their meaning for the interpretation of Metazoan diversification is discussed. A third part gives a synoptic overview of the most important proposed causes and mechanisms for the Cambrian explosion.


Der vorliegende Artikel faßt die Ereignisse an der Wende Proterozoikum/Kambrium zusammen, die als «kambrische Explosion» bezeichnet wurden. Zunächst werden die beobachteten Etappen der organismischen Evolution vorgestellt und ihr Einfluß auf das heutige Konzept der Grenze Proterozoikum/Kambrium diskutiert. Anschließend wird das Ausmaß der kambrischen Fossilarchive und ihre Bedeutung für die heutige Sicht der Metazoen-Entfaltung referiert. Schließlich wird versucht, eine Übersicht über die wichtigsten der vielen diskutierten Ursachen und Mechanismen der kambrischen Explosion zu geben.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, D. 1989. Phosphatisierte Fossilien aus dem unteren Ordoviz von Südschweden. - Berliner geowissenschaftliche Abhandlungen, (A)106: 9–19, Berlin.Google Scholar
  2. Bengtson, S. 1981. The Tommotian goes international. - Lethaia14: 372, Oslo.CrossRefGoogle Scholar
  3. Bengtson, S. &Yue, Zh. 1997. Fossilized metazoan embryos from the earliest Cambrian. - Science277: 1645–1648, Washington, D.C.CrossRefGoogle Scholar
  4. Bowring, S.A.;Grotzinger, J.P.;Isachsen, C.E.;Knoll, A.H.;Pelechaty, S.M. &Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. - Science 261: 1293–1298, Washington, D.C.CrossRefGoogle Scholar
  5. Brasier, M.D. 1980. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe. - Journal of the Geological Society of London 137: 695–703, London.CrossRefGoogle Scholar
  6. — 1989. Towards a biostratigraphy of the earliest skeletal biotas. - [In:]Cowie, J.W. &Brasier, M.D. [Hrsg.] The Precambrian-Cambrian boundary: 117–165, Oxford (Clarendon Press).Google Scholar
  7. — 1990. Nutrients in the early Cambrian. - Nature 347: 521–522, London.CrossRefGoogle Scholar
  8. — 1991. Nutrient flux and the evolutionary explosion across the Precambrian-Cambrian boundary interval. -Historical Biology5 (2–4): 85–93, Chur, Reading, Paris, Philadelphia, Tokyo, Melbourne.Google Scholar
  9. — 1992a. Nutrient-enriched waters and the early skeletal fossil record. - Journal of the Geological Society London 149: 621–629, London.CrossRefGoogle Scholar
  10. — 1992b. Global ocean-atmosphere change across the Precambrian-Cambrian transition. - Geological Magazine129 (2): 161–168, London.Google Scholar
  11. — 1992c. Paleoceanography and changes in the biological cycling of phosphorus across the Precambrian-Cambrian boundary. - [In:]Lipps, J.H. &Signor, P.W. [Hrsg.] Origin and Early Evolution of the Metazoa: 483–523, New York (Plenum Press).Google Scholar
  12. — 1995. The basal Cambrian transition and Cambrian bioevents (from Terminal Proterozoic extinctions to Cambrian biomeres). - [In:]Walliser, O.H. [Hrsg.] Global Events and Event Stratigraphy in the Phanerozoic: 113–118, Berlin (Springer).Google Scholar
  13. Brasier, M.D.;Cowie, J. &Taylor, M. 1994. Decision on the Precambrian-Cambrian boundary stratotype. - Episodes17 (1–2): 3–8, Ottawa.Google Scholar
  14. Brasier, M.D.;Green, O. &Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. - Geology25 (4): 303–306, Boulder/Col.CrossRefGoogle Scholar
  15. Briggs, D.E.G. 1976. The arthropodBranchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. -Geological Survey of Canada Bulletin264: 1–29, Ottawa.Google Scholar
  16. — 1979.Anomalocaris, the largest known Cambrian arthropod. -Palaeontology22: 631–664, London.Google Scholar
  17. Briggs, D.E.G.;Erwin, D.H. &Collier, F.J. 1994. The fossils of the Burgess Shale. - 238 S., Washington, London (Smithsonian Institution Press).Google Scholar
  18. Briggs, D.E.G. &Mount, J.D. 1982. The occurrence of the giant arthropodAnomalocaris in the Lower Cambrian of Southern California, and the overall distribution of the genus. - Journal of Paleontology56 (5): 1112–1118, Tulsa/ Okl.Google Scholar
  19. Briggs, D.E.G. &Robison, R.A. 1984. Exceptionally preserved nontrilobite arthropods andAnomalocaris from the Middle Cambrian of Utah. - University of Kansas Paleontological Contributions Paper111: 1–23, Lawrence/ Kans.Google Scholar
  20. Butterfield, N.J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. -Nature369: 477–479, London.CrossRefGoogle Scholar
  21. Campbell, L. &Kauffman, M.E. 1969.Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. - Proceedings Pennsylvania Academy of Science43: 172–176.Google Scholar
  22. Chen, Junyuan;Hou, Xian-guang &Lu, Hao-zhi 1989a. [Early Cambrian netted scale-bearing worm-like sea animal]. - Acta Palaeontologica Sinica28 (1): 1–16, Beijing. [In Chinesisch mit englischer Zusammenfassung].Google Scholar
  23. — 1989b. [Early Cambrian hock glass-like rare sea animalDinomischus (Entoprocta) and its ecological features]. - Acta Palaeontologica Sinica28 (1): 59–71, Beijing. [In Chinesisch mit englischer Zusammenfassung].Google Scholar
  24. Chen, Junyuan;Ramsköld, L. &Zhou, Gui-qing 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. - Science264: 1304–1308, Washington, D.C.CrossRefGoogle Scholar
  25. Chen Junyuan; Zhou Guiqing; Zhu Maoyan & Yek K. Y. 1997. The Chengjiang Biota. A unique window of the Cambrian explosion. - 222 S., Taitung.Google Scholar
  26. Chen, Junyuan;Zhu, Maoyan &Zhou, Guiqing 1995. The Early Cambrian medusiform metazoanEldonia from the Chengjiang Lagerstaette. - Acta Palaeontologica Polonica40 (3): 213–244, Warschau.Google Scholar
  27. Collins, D. 1996. The «evolution» ofAnomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). - Journal of Paleontology70 (2): 280–293, Tulsa/Okl.Google Scholar
  28. Collins, D.H.;Briggs, D.E.G. &Conway Morris, S. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. - Science222: 163–167, Washington, D.C.CrossRefGoogle Scholar
  29. Conway Morris, S. 1977. Fossil priapulid worms. - Special Papers in Palaeontology20: I–IV+1-159, London.Google Scholar
  30. — 1985. Cambrian Lagerstätten: their distribution and significance. - Philosophical Transactions of the Royal Society London, (B)311: 49–65, London.CrossRefGoogle Scholar
  31. — 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). -Palaeontology29: 423- 467, London.Google Scholar
  32. — 1987. The search for the Precambrian-Cambrian boundary. -American Scientist75: 156–167, Washington, D.C.Google Scholar
  33. - 1988. Metazoan evolution near the Precambrian-Cambrian boundary: Use and misuse of small shelly fossils. - [In:] Landing, E.; Narbonne, G.M. & Myrow, P. [Hrsg.] Trace Fossils, Small Shelly Fossils and the Precambrian- Cambrian Boundary, Proceedings, August 8–18, 1987, Memorial University. - N. Y. State Museum/Geological Survey Bulletin463: 9–10, Albany, N.Y.Google Scholar
  34. — 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. - Transactions of the Royal Society Edinburgh (Earth Sciences)80: 271–283, Edinburgh.Google Scholar
  35. — 1990a. Late Precambrian and Cambrian soft-bodied faunas. - Annual Review of Earth and Planetary Sciences18: 101- 122, Palo Alto.CrossRefGoogle Scholar
  36. — 1990b. Cambroclaves. - [In:]Bengtson, S.;Conway Morris, S.;Cooper, B.J.;Jell, P.A. &Runnegar, B.N. [Hrsg.] Early Cambrian fossils from South Australia. - Association of Australasian Paleontologists Memoir9: 103–119, Brisbane.Google Scholar
  37. — 1992. Burgess Shale-type faunas in the context of the «Cambrian explosion»: a review.- Journal of the Geological Society of London149: 631–636, London.CrossRefGoogle Scholar
  38. — 1993a. The fossil record and the early evolution of the Metazoa. - Nature361: 219–225, London.CrossRefGoogle Scholar
  39. — 1993b. Ediacaran-like fossils in Cambrian Burgess shaletype faunas of North America. -Palaeontology36 (3): 593–635, London.Google Scholar
  40. — 1994. A palaeontological perspective. - Current Opinion in Genetics and Development4: 802–809, London.CrossRefGoogle Scholar
  41. Conway Morris, S. &Jenkins, R.J.F. 1985. Healed injuries in Early Cambrian trilobites from South Australia. - Alcheringa9 (3): 167–178, Sydney.CrossRefGoogle Scholar
  42. Conway Morris, S.; Mattes, B.W. & Chen Menge 1990. The early skeletal organism Cloudina: New occurrences from Oman and possibly China. - [In:] Knoll, A.H. & Ostrom, J.H. [Hrsg.] Proterozoic Evolution and Environments. - American Journal of Science 290-A: 245–260, New Haven/ Conn.Google Scholar
  43. Conway Morris, S. &Peel, J.S. 1990. Articulated halkieriids from the Lower Cambrian of North Greenland.- Nature345 (6278): 802–805, London.CrossRefGoogle Scholar
  44. — &Peel, J.S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. - Philosophical Transactions of the Royal Society London, (B)347: 305–358, London.CrossRefGoogle Scholar
  45. Conway Morris, S.;Peel, J.S.;Higgins, A.K.;Soper, N.J. &Davis, N.C. 1987. A Burgess Shale-like fauna from the Lower Cambrian of north Greenland. - Nature326: 181–183, London.CrossRefGoogle Scholar
  46. Conway Morris, S. &Robison, R.A. 1982. The enigmatic medusoidPeytoia and a comparison of some Cambrian biotas. - Journal of Paleontology56: 116–122, Tulsa/Okl.Google Scholar
  47. — 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. - University of Kansas Paleontological Contributions Paper117: 1–22, Lawrence/ Kans.Google Scholar
  48. — 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. - University of Kansas Paleontological Contributions122: 1–48, Lawrence/Kans.Google Scholar
  49. Cook, P.J. 1992. Phosphogenesis around the Proterozoic- Phanerozoic transition. - Journal of the Geological Society London149: 615–620, London.CrossRefGoogle Scholar
  50. Cook, P.J. &Shergold, J.H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. - Nature308 (5956): 231–236, London.CrossRefGoogle Scholar
  51. — &Shergold, J.H. [Hrsg.] 1986. Phosphate deposits of the world. Volume 1. Proterozoic and Cambrian phosphorites. - XVII + 386 S., Cambridge, New York, Melbourne (Cambridge University Press).Google Scholar
  52. Dalziel, I.W.D. 1991. Pacific margins of Laurentia and East Antarctica as a conjugate rift pair: vidence and implications for an Eocambrian supercontinent. - Geology19: 598–601, Boulder/Col.CrossRefGoogle Scholar
  53. Dalziel, I.W.D.;Dalla Salda, L.H. &Gahagan, L.M. 1994. Paleozoic Laurentia-Gondwana interaction and the origin of the Appalachian-Andean mountain system. - Geological Society of America Bulletin106: 147–158, Boulder/Col.CrossRefGoogle Scholar
  54. Dzik, J. &Lendzion, K. 1988. The oldest arthropods of the East European Platform. - Lethaia21: 29–38, Oslo.CrossRefGoogle Scholar
  55. Edhorn, A.S. 1977. Early Cambrian algae croppers. - Canadian Journal of Earth Sciences14 (5): 1014–1020, Ottawa/ On.Google Scholar
  56. Gehling, J.G. 1991. The case for Ediacaran fossil roots to the metazoan tree. - Memoirs of the Geological Society of India20: 181–224, Calcutta.Google Scholar
  57. Germs, G.J.B. 1972. New shelly fossils from the Nama Group, South West Africa. - American Journal of Science272: 752–761, New Haven/Conn.Google Scholar
  58. Geyer, G. 1990. Correlation along the Lower/Middle Cambrian boundary — a puzzling story with an elusory end? - [In:] Repina, L.N. & Zhuravlev, A.Yu. [Hrsg.] Tretij mezhdunarodnyj simpozium po kembrijskoj sisteme. Tezisy dokladov: 100–102, Novosibirsk.Google Scholar
  59. — 1994. An enigmatic bilateral fossil from the Lower Cambrian of Morocco. - Journal of Paleontology68 (4): 710–716, Tulsa/Okl.Google Scholar
  60. — 1998. Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian. - Canadian Journal of Earth Sciences, Ottawa [Im Druck].Google Scholar
  61. Geyer, G. & Landing, E. 1995. The Cambrian of the Moroccan Atlas region. - [In:] Geyer, G. & Landing, E. [Hrsg.] MOROCCO ’95 - the Lower-Middle Cambrian standard of western Gondwana. - Beringeria Special Issue2: 7–46, Würzburg.Google Scholar
  62. Geyer, G. & Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. - [In:] Geyer, G. & Landing, E. [Hrsg.] MOROCCO ’95 - the Lower-Middle Cambrian standard of western Gondwana. -Beringeria Special Issue2: 175–202, Würzburg.Google Scholar
  63. Glaessner, M.F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. - Alcheringa3: 21–31, Sydney.CrossRefGoogle Scholar
  64. — 1984. The dawn of animal life. A biohistorical study. -XI + 244 S., Cambridge (Cambridge University Press).Google Scholar
  65. Gnilovskaya, M.B. 1971. Drevsneyshiye rasteniya venda Russkoj platformy (pozdnyj dokembrij [The most ancient Vendian water plants of the Russian platform]. - Paleonto- logicheskij Zhurnal1971 (3): 101–107, Moskau.Google Scholar
  66. — 1979. Ventotenidy [Vendotaenids]. - [In:]Volkova, N.A.;Gnilovskaya, M.B.;Lendzion, K.;Kir’yanov, V.V.;Palij, V.M.;Pashkyavichene, L.T.;Piskun, L.V.;Posti, E.;Rozanov, A.Yu.;Urbanek, A.;Fedonkin, M. &Yankauskas, T.V.: Paleontologiya verkhnedokem- brijskikh i kembrijskikh otlozhenij zapada Vostochno- Evropejskoj platformy. Pol’sko-sovetskaya rabotyaya gruppa po probleme «Granitsa kembriya i dokembriya», Akademiya Nauk SSSR: 39–48, Moskau (Nauka).Google Scholar
  67. — 1985. Vendotaenids — Vendian Metaphytes. - [In:]Sokolov, B.S. &Iwanowski, A.B. [Hrsg.] The Vendian System.1, Paleontology: 138–147, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona (Springer).Google Scholar
  68. Gould, S.J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. - 347 S., New York, London (W.W. Norton).Google Scholar
  69. Grant, S.W.F. 1990. Shell structure and distribution ofCloudina, a potential index fossil for the terminal Proterozoic. - [In:] Knoll, A.H. & Ostrom, J.H. [Hrsg.] Proterozoic Evolution and Environments. - American Journal of Science 290-A: 261–294, New Haven/Conn.Google Scholar
  70. Guerich, G. 1930. Die bislang ältesten Spuren von Organismen in Südafrika. - Comptes Rendus 15th International Geological Congress, South Africa, 1929: 670–680, Pretoria.Google Scholar
  71. — 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Nachträge und Zusätze.- Paläontologische Zeitschrift15: 137–154, Stuttgart.Google Scholar
  72. Hagadorn, J.W. &Bottjer, DJ. 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. - Geology25 (11): 1047–1050, Boulder/ Col.CrossRefGoogle Scholar
  73. Hahn, G. &Pflug, H.D. 1985. Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. - Geologica et Palaeontologica19: 1–13, Marburg.Google Scholar
  74. Hill, D. 1972. Archaeocyatha. - [In:]Teichert, C. [Hrsg.] Treatise on Invertebrate Paleontology. Part E, Volume 1 [2nd edition]: 158 S., Boulder/Col., Lawrence/Kans. (Geol. Soc. America, Univ. Kansas Press).Google Scholar
  75. Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire, England. - Palaeontographica, (A)198 (1–3): 41–100, Stuttgart.Google Scholar
  76. Hinz, I.;Kraft, P.;Mergl, M. &Müller, K.J. 1990. The problematicHadimopanella, Kaimenella, Milaculum undUtahphospha identified as sclerites of Palaeoscolecidae. - Lethaia23: 217–221, Oslo.CrossRefGoogle Scholar
  77. Hoffman, P.H. 1991. Did the breakout of Laurentia turn Gondwana inside out? - Science252: 1409–1413, Washington, D.C.CrossRefGoogle Scholar
  78. Holser, W.T. 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. - [In:]Holland, H.D. &Trendall, A.F. [Hrsg.] Patterns of Change in Earth Evolution: 123–143, Berlin (Springer).Google Scholar
  79. Hou, Xian-guang 1987a. [Two new arthropods from Lower Cambrian, Chengjiang, eastern Yunnan]. - Acta Palaeontologica Sinica26 (3): 236–256, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  80. — 1987b. [Early Cambrian large bivalved arthropods from Chenjiang, eastern Yunnan]. - Acta Palaeontologica Sinica26 (3): 286–298, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  81. — 1993. The arthropodNaraoia from the Lower Cambrian Chengjiang fauna. - [In:]Siverson, M. [Hrsg.] Lundagarna, III. Historisk geologi och paleontologi, 15–16 mars 1993, Lund Publications in Geology109: 12, Lund.Google Scholar
  82. Hou, Xianguang &Bergström, J. 1991. The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance. - [In:]Simonetta, A.M. &Conway Morris, S. [Hrsg.] The Early Evolution of Metazoa and the Significance of Problematic Taxa. Proceedings and International Symposium, University of Camerino, 27– 31 March 1989: 179–187, Cambridge (Cambridge University Press).Google Scholar
  83. — 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. - Fossils and Strata45: 1–116, Oslo.Google Scholar
  84. Hou, Xian-guang;Chen, Junyuan &Lu, Hao-zhi 1989. [Early Cambrian new arthropods from Chengjiang, Yunnan]. - Acta Palaeontologica Sinica28 (1): 42–57, Beijing. [In Chinesisch mit englischer Zusammenfassung].Google Scholar
  85. Hou, Xianguang &Sun, Weiguo 1988. [Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan]. -Acta Palaeontologica Sinica27: 1–12, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  86. Hsu, K.;Montadert, L.;Bernoulli, D.;Cita, M.;Erickson, A.;Garrison, R.E.;Kidd, R.B.;Mélierés, F.;Müller, C. &Wright, R. 1978. History of the Mediterranean salinity crisis. - Initial Reports of the Deep Sea Drilling Project42: 1053–1078.Google Scholar
  87. Hsu, K.J.;Oberhänsli, H.;Gao, J.Y.;Sun, S.;Chen, H. &Krähenbühl, U. 1985. «Strangelove ocean» before the Cambrian explosion. - Nature316: 809–811, London.CrossRefGoogle Scholar
  88. Hutchinson, G.E. 1961. The biologist poses some problems. - American Association for the Advancement of Science Publications67: 85–94, Washington, D.C.Google Scholar
  89. Isachsen, C.E.;Bowring, S.A.;Landing, E. &Samson, S.D. 1994. New constraint on the division of Cambrian time. - Geology22: 496–498, Boulder/Col.CrossRefGoogle Scholar
  90. Kazmierczak, J.;Ittekott, V. &Degens, E.T. 1985. Biocalcification through time: environmental challenge and cellular response. - Paläontologische Zeitschrift59: 15–33, Stuttgart.Google Scholar
  91. Kirschvink, J.L.;Ripperdan, R.L. &Evans, D.A. 1997. Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander. - Science277: 541–545, Washington, D.C.CrossRefGoogle Scholar
  92. Krishtofovich, A.N. 1953. [The discovery of lycopsid-like plant in the Cambrian of East Siberia]. - Doklady Akademiya Nauk SSSR91: 1377–1379, Moskau.Google Scholar
  93. Lafay, B.;Boury-Esnault, N.;Vacelet, J. &Christen, R. 1992. An analysis of partial 28S ribosomal RNA sequences suggests early radiations of sponges. - Biosystems28: 139- 151, Amsterdam.CrossRefGoogle Scholar
  94. Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. -Geology22: 179–184, Boulder/Col.CrossRefGoogle Scholar
  95. Landing, E.;Bowring, S.A.;Davidek, K.;Westrop, S.R.;Geyer, G. &Heldmaier, W. 1998. New U-Pb zircon dates from Avalon and Gondwana and duration of the Early Cambrian. - Canadian Journal of Earth Sciences, Ottawa [Im Druck].Google Scholar
  96. Landing, E.;Myrow, P.;Benus, A.P. &Narbonne, G.M. 1989. The Placentian Series: appearance of the oldest skeletized faunas in southeastern Newfoundland. - Journal of Paleontology63 (6): 739–769, Tulsa/Okl.Google Scholar
  97. Lendzion, K. 1975. Fauna of theMobergella zone in the Polish Lower Cambrian. - Kwartalnik Geologiczny19 (2): 237–242, Warschau.Google Scholar
  98. — 1977. First gastropod fauna from the Klimontovian Stage (Lower Cambrian) of the South-Eastern Poland. -Kwartalnik Geologiczny21 (2): 239–243, Warschau.Google Scholar
  99. Lieberman, B.S. 1997. Early Cambrian paleogeography and tectonic history: Abiogeographic approach. - Geology25: 1039–1042, Boulder/Col.CrossRefGoogle Scholar
  100. Mao, Jia-ren;Zhao, Yuan-long &Yu, Ping 1994. [Noncalcareous algae of Kaili Fauna in Taijiang, Guizhou]. - Acta Palaeontographica Sinica33: 345–349, Beijing. [In Chinese with English summary].Google Scholar
  101. McKerrow, W.S.;Scotese, C.R. &Brasier, M.D. 1992. Early Cambrian continental reconstruction. - Journal of the Geological Society of London149: 599–606, London.CrossRefGoogle Scholar
  102. McMenamin, M.A.S. 1986. The Garden of Ediacara. - Palaios1: 178–182, Tulsa/Okl.CrossRefGoogle Scholar
  103. — 1987. The emergence of animals. - Scientific American256: 94–102, Washington, D.C.Google Scholar
  104. McMenamin, M.A.S. &McMenamin, D.L.S. 1990. The emergence of animals. The Cambrian breakthrough. - X+217 S., New York (Columbia University Press).Google Scholar
  105. Moores, E.M. 1991. Southwest U.S.-East antarctic (SWEAT) connection: Ahypothesis. - Geology19: 425–428, Boulder/ Col.CrossRefGoogle Scholar
  106. Müller, K.J. 1979. Phosphatocopine ostracodes with well preserved appendages from the Upper Cambrian of Sweden. -Lethaia12: 1–27, Oslo.CrossRefGoogle Scholar
  107. - 1981. Arthropods with phosphotized soft parts from the Upper Cambrian «Orsten» of Sweden. - Short Papers of the Second International Symposium on the Cambrian System, Golden 1981, Open File Report: 147–151, Golden/Col.Google Scholar
  108. Müller, K.J. &Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. - Palaeontology36: 549–592, London.Google Scholar
  109. Müller, K.J. &Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian «Orsten» of Sweden. - Transactions of the Royal Society of Edinburgh76: 161- 172, Edinburgh.Google Scholar
  110. — 1986a.Martinssonia elongata gen. et sp. n., a crustacean-like euarthropod from the Upper Cambrian «Orsten» of Sweden. - Zoologica Scripta15 (1): 73–92, Stockholm.CrossRefGoogle Scholar
  111. — 1986b. Arthropod larvae from the Upper Cambrian of Sweden. - Transactions of the Royal Society of Edinburgh (Earth Sciences)77: 157–179, Edinburgh.Google Scholar
  112. — 1987. Morphology, ontogeny and life habits ofAgnostus pisiformis from the Upper Cambrian of Sweden. - Fossils and Strata19: 1–124, Oslo.Google Scholar
  113. — 1991. «Orsten» arthropods — small in size but of great impact on biological and phylogenetic interpretations. - [In:] Early Life. Proceedings of a Geological Society Symposium in Stockholm, March 22–23, 1990. -Geologiska Föreningens i Stockholm Förhandlingar113: 88–90, Stockholm.Google Scholar
  114. Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil Lagerstätten, Kangaroo Island, South Australia. -Memoirs of the Association of Australasian Paleontologists18: 31–40, Brisbane.Google Scholar
  115. Pelechaty, S.M. 1996. Stratigraphy evidence for the Sibiria- Laurentia connection and Early Cambrian rifting. - Geology24: 719–722, Boulder/Col.CrossRefGoogle Scholar
  116. Pflüger, F. &Gresse, P.G. 1996. Microbial sand chips — a non-actualistic sedimentary structure. - Sedimentary Geology102: 263–274, Amsterdam.CrossRefGoogle Scholar
  117. Pflug, H.D. 1972. Systematik der jung-präkambrischen Petalonamae. - Paläontologische Zeitschrift46: 56–67, Stuttgart.Google Scholar
  118. — 1974. Feinstruktur und Ontogenie der jungpräkambrischen Petalo-Organismen. -Paläontologische Zeitschrift48: 77- 109, Stuttgart.Google Scholar
  119. Powell, CM.;Li, Z.X.;McElhinny, M.W.;Meert, J.G. &Park, J.K. 1993. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. - Geology21: 889–892, Boulder/ Col.CrossRefGoogle Scholar
  120. Resser, Ch.E. 1929. New Lower and Middle Cambrian Crustacea. - Proceedings of the U. S. National Museum76: 1–18, Washington, D.C.Google Scholar
  121. — 1938. Middle Cambrian fossils from Pend Oreille Lake, Idaho. - Smithsononian Miscellaneous Collections97 (3): 1–12, Washington, D.C.Google Scholar
  122. — 1939. The Spence Shale and its fauna. - Smithsononian Miscellaneous Collections97 (12): 1–29, Washington, D.C.Google Scholar
  123. Resser, Ch.E. &Howell, B.F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. - Bulletin of the Geological Society of America49 (2): 195–248, New York.Google Scholar
  124. Richter, R. &Richter, E. 1927. Eine Crustacee (Isoxys carbonelli n. sp.) in den Archaeocyathus-Bildungen der Sierra Morena. - Senckenbergiana9: 188–195, Frankfurt a.M.Google Scholar
  125. Rigby, J.K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of western Millard County, Utah. — Journal of Paleontology57: 240–270, Tulsa/Okl.Google Scholar
  126. Robison, R.A. 1984. New occurrences of the unusual trilobiteNaraoia from the Cambrian of Idaho and Utah. -University of Kansas Paleontological Contributions112: 1–8, Lawrence/Kans.Google Scholar
  127. Robison, R.A. &Richards, B.C. 1981. Larger bivalve arthropods from the Middle Cambrian of Utah. -University of Kansas Paleontological Contributions106: 1–19, Lawrence, Kansas.Google Scholar
  128. Roy, K. &Fåhræus, L.E. 1989. Tremadocian (Early Ordovician) nauplius-like larvae from the Middle Arm Point Formation, Bay of Islands, western Newfoundland. - Canadian Journal of Earth Sciences26: 1802–1806, Ottawa.Google Scholar
  129. Rozanov, A.Yu. 1992. Some problems concerning the Precambrian-Cambrian transition and the Cambrian faunal radiation. -Journal of the Geological Society London149: 593- 598, London.CrossRefGoogle Scholar
  130. Rozanov, A.Yu.;Missarzhevskij, V.V.;Volkova, N.A.;Voronova, L.G.;Krylov, I.N.;Keller, B.M.;Korolyuk, I.K.;Lendzion, K.;Mikhniak, R.;Pykhova, N.G. &Sidorov, A.D. 1969. Tommotskij yarus i problema nizhnej granitsy kembriya. - Akademiya Nauk SSSR, Trudy institut geologii206: 1–315, Moskau (Nauka).Google Scholar
  131. Rudwick, M.J.S. 1964. The interference of function from structure in fossils. - British Journal of Philosophical Science15: 27–40, London.CrossRefGoogle Scholar
  132. Runnegar, B. 1982. A molecular clock date for the origin of the animal phyla. - Lethaia15: 199–205, Oslo.CrossRefGoogle Scholar
  133. — 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara «fauna». — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen195: 303–318, Stuttgart.Google Scholar
  134. Saul, J.M. 1994. Cancer and autoimmune disease: A Cambrian couple? - Geology22 (1): 5, Boulder/Col.Google Scholar
  135. Sdzuy, K. 1978. The Precambrian-Cambrian boundary beds in Morocco (Preliminary Report). - Geological Magazine115: 83–94, Cambridge.Google Scholar
  136. Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? - [In:]Holland, H.D. &Trendall, A.F. [Hrsg.] Patterns of change in Earth Evolution. Dahlem Konferenzen 1984: 159–168, Berlin, Heidelberg, New York, Tokyo (Springer).Google Scholar
  137. — 1989. Vendozoa: Organismic construction in the Proterozoic biosphere. - Lethaia22: 229–239, Oslo.CrossRefGoogle Scholar
  138. — 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. - Journal of the Geological Society London149: 607–613, London.CrossRefGoogle Scholar
  139. Stanley, S.M. 1973. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. -Proceedings of the National Academy of Science72: 1482–1489, Washington, D.C.Google Scholar
  140. — 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. - American Journal of Science276: 56- 76, New Haven/Conn.Google Scholar
  141. Steiner, M. 1994. Die neoproterozoischen Megaalgen Südchinas. - Berliner Geowissenschaftliche Abhandlungen, (E)15: 1–146, Berlin.Google Scholar
  142. - 1997.Chuaria Circularis [sic] Walcott 1899 - «megasphaeromorph acritarch» or prokaryotic colony? - [In:] Fatka, O. & Servais, T. [Hrsg.] Acritarcha in Praha 1996. - Acta Universitatis Carolinae, Geologica40 [1996]: 645–665, Prag.Google Scholar
  143. Sun, Wei-guo &Hou, Xian-guang 1987a. Early Cambrian Medusae from Chengjiang, Yunnan, China. - Acta Palaeontolologica Sinica26: 257–271, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  144. — 1987b. Early Cambrian worms from Chenjiang, Yunnan, China:Maotianshania gen. nov. - Acta Palaeontologica Sinica26: 299–305, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  145. Torsvik, T.H.;Smethurst, M.A.;Meert, J.G.;Van der Voo, R.;McKerrow, W.S.;Brasier, M.D.;Sturt, B.A. &Walderhaug, H.J. 1996. Continental break-up and collision in the Neoproterozoic and Paleozoic. — A tale of Baltica and Laurentia. - Earth-Science Reviews40: 229–258, Amsterdam.CrossRefGoogle Scholar
  146. Tucker, M.E. 1992. The Precambrian-Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization. - Journal of the Geological Society London149: 655–668, London.CrossRefGoogle Scholar
  147. Vidal, G. &Moczydlowska, M. 1992. Patterns of phytoplankton radiation across the Precambrian-Cambrian boundary. - Journal of the Geological Society London149: 647–654, London.CrossRefGoogle Scholar
  148. Walcott, Ch.D. 1891. The fauna of the Lower Cambrian or Olenellus Zone. - 10th Annual Report U. S. Geological Survey, Part1: 509–774, Washington, D.C.Google Scholar
  149. — 1912. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Cambrian Geology and Paleontology, II, No. 6. - Smithsonian Miscellaneous Collections57 (6): 145–228, Washington, D.C.Google Scholar
  150. Walossek, D. 1993. The Upper CambrianRehbachiella and the phylogeny of Branchiopoda and Crustacea. - Fossils and Strata32: 1–202, Oslo.Google Scholar
  151. — 1996.Rehbachiella, der bisher älteste Branchiopode. - Stapfia, Kataloge des O. Ö. Landesmuseums, neue Folge100: 21–28, Linz.Google Scholar
  152. Walossek, D.;Hinz-Schallreuter, I.;Shergold, J.H. &Müller, K.J. 1993. Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. - Lethaia26: 7–15, Oslo.CrossRefGoogle Scholar
  153. Walossek, D. &Müller, K.J. 1990. Upper Cambrian stemlineage crustaceans and their bearing upon the monophyly of Crustacea and the position ofAgnostus. - Lethaia23 (4): 409–427, Oslo.CrossRefGoogle Scholar
  154. — 1992. The «Alum Shale Window» — contributions of the «Orsten» arthropods to the phylogeny of Crustacea. - Acta Zoologica73: 305–312, Stockholm.CrossRefGoogle Scholar
  155. — 1994. Pentastomid parasites from the Lower Palaeozoic of Sweden. - Transactions of the Royal Society of Edinburgh, Earth Sciences85: 1–37, Edinburgh.Google Scholar
  156. - 1997. Cambrian «Orsten»-type arthropods and the phylogeny of Crustacea. - [In:] Fortey, R.A. & Thomas, R.H. [Hrsg.] Arthropod Relationships. - Systematics Association Special Volume Series55: 139–153, London.Google Scholar
  157. Whittington, H.B. 1980. The significance of the fauna of the Burgess Shale, Middle Cambrian, British Columbia. -Proceedings of the Geologists Association91 (2) 127–148, London.CrossRefGoogle Scholar
  158. Whittington, H.B. &Conway Morris, S. 1985. Extraordinary fossil biotas: Their ecological and evolutionary significance. - Philosophical Transactions of the Royal Society of London, (B)311: 1–192, London. 30Google Scholar
  159. Xiang, Li-wen;An, Tai-xiang;Guo, Zhen-ming;Li, J.J.;Nan, Run-shan;Qian, Yi;Shen, X.F.;Yang, Jialu;Yuan, Kexing;Zhang, S.G. &Zhou, Guoqiang 1981. [The Cambrian System of China]. - Stratigraphy of China4: 1–198, Beijing (Geological Publishing House).Google Scholar
  160. Xiao, Shu-hai;Yun, Zhang &Knoll, A.H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. - Nature291 (6667): 553–558, London.Google Scholar
  161. Young, G.M. 1992. Late Proterozoic stratigraphy and the Canada-Australia connection. - Geology20: 215–218, Boulder/Col.CrossRefGoogle Scholar
  162. Zhang, Xi-guang &Pratt, B.R. 1996. Early Cambrian palaeoscolecid cuticles from Shaanxi, China. -Journal of Paleontology70 (2): 275–279, Tulsa/Okl.Google Scholar
  163. Zhang, Wen-tang W.T. Chang] 1987. World’s oldest Cambrian trilobites from eastern Yunnan. — Stratigraphy and Palaeontology of Systemic Boundaries in China. Precambrian-Cambrian Boundary1: 1–16, Beijing.Google Scholar
  164. Zhang, Wen-tang &Hou, Xian-guang 1985. [Preliminary notes on the occurrence of the unusual trilobiteNaraoia in Asia]. - Acta Palaeontologica Sinica24: 591–595, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  165. Zhao, Yuan-long;Yuan, Jin-liang;Huang, You-zhuang;Mao, Jia-ren;Qian, Yi;Zhang, Zheng-hua &Gong, Xian-ying 1994. [Middle Cambrian Kaili Fauna in Taijiang, Guizhou].-Acta Palaeontologica Sinica33 (3): 263–271, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  166. Zhao, Yuan-long;Yuan, Jin-liang;Zhang, Zheng-hua;Huang, You-zhuang;Chen, Xiao-yuan &Zhou, Zhen 1996. [Composition and significance of the Middle Cambrian Kaili lagerstaette in Taijiang County, Guizhou Province, China, a new Burgess type lagerstaette]. - Guizhou Dizhi13 (2): 7–14, Guiyang. [In Chinesisch mit engl. Zusammenfassung].Google Scholar
  167. Zhao, Yuan-long &Zhu, Mao-yan 1994. [Medusiform fossils of Kaili Fauna from Taijiang, Guizhou]. -Acta Palaeontologica Sinica33 (3): 272–280, Beijing. [In Chinesisch mit engl. Zusammenfassung].Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 1998

Authors and Affiliations

  1. 1.International Subcommision on Cambrian StratigraphyInstitut für Paläontologie, Bayrische Julius-Maximilians-UniversitätWürzburg

Personalised recommendations