Interferon treatment of human malignancies - a short review

  • Stefan Einhorn
  • Hans Strander


Interferon (IFN) therapy can induce remissions in human malignancies and has been established as a treatment of choice in several diseases. The clinical effects of IFNs are especially obvious in the treatment of hematological malignancies and virus-associated tumor diseases. Most other types of malignant solid tumors are less likely to respond to IFN as monotherapy and optimal therapeutic schedules are yet to be developed. It is of special interest that combinations of IFNs with other treatment modalities have yielded an increased response rate in several diseases. Several studies on the use of IFN as adjuvant therapy are under way.

It is possible, if not likely, that the antitumor effects of IFNs are mediated by different cellular effects in cooperation. These may differ between different malignancies. Mainly based on studies comparingin vitro sensitivity of malignant cells to clinical effects on the same tumor, we suggest that the direct effects of IFNs on the malignant cell are of major importance for the antitumor action of IFN. A deepened insight into the cellular aspects of the antitumor action of these cytokines is a prerequisite for the optimal use of IFNs in the treatment of tumors in man.


Interferon Multiple Myeloma Chronic Myeloid Leukemia Antitumor Effect Chronic Myeloid Leukemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strander H: Interferon treatment of human neoplasia.Adv CancerRes 46, 1 (1986).CrossRefGoogle Scholar
  2. 2.
    Baron S, Coppenhauer D H, Dianzani F, Fleischmann W R Jr, Highes T K Jr, Klimpel G R, Niesel D W, Stanton G J, Tyring S K, Introduction to the interferon system, in Baron S, Coppenhauer D H, Dianzani F, Fleiscbmann W R Jr, Highes T K Jr, Klimpel G R, Niesel D W, Stanton G J, Tyring S K (eds):Interferon: Principles and medical applications, pp.l–17. The University of Texas (1992).Google Scholar
  3. 3.
    Baron S, Tyring S K, Fleischmann W R Jr: The interferons: mechanisms of action and clinical applications.JAMA 266, 1375 (1991).CrossRefPubMedGoogle Scholar
  4. 4.
    Strander H: Clinical effects of interferon therapy with special emphasis on antitumor therapy.Acta Oncol 28, 355 (1989).CrossRefPubMedGoogle Scholar
  5. 5.
    Tyring S K: Introduction to clinical uses of interferons, in Baron S, Coppenhauer D H, Diaslzani F, Fleischmann W R Jr, Highes T K Jr, Klimpel G R, Niesel D W, Stanton G J, Tyring S K (eds):Interferon: Principles andmedical applications, pp.399–407. The University of Texas (1992).Google Scholar
  6. 6.
    Strander H: The action of interferons on virus-associated human neoplasms.Cancer Surv 8, 755 (1989).PubMedGoogle Scholar
  7. 7.
    Hoofnagle J H: Interferon therapy of viral hepatitis, in Baron S, Coppenhauer D H, Dianzani F, Fleischmann W R Jr, Highes T K Jr, Kimpel G R, Niesel D W, Stanton G J, Tyring S K (eds):Interferon: Principles and medical applications, pp.433–462. The University of Texas (1992).Google Scholar
  8. 8.
    Schiffer C A: Interferon studies in the treatment of patients with leukemia.Sere Onco 118 (suppl. 7), 1 (1991).Google Scholar
  9. 9.
    Talpaz M, Kantarjian H, Kurzrock R, Trujillo J M, Guttermann J U: Interferon-alpha produces sustained cytogenetic responses in chronic myelogeneous leukemia.Ann Intern Med 114, 532 (1991).PubMedGoogle Scholar
  10. 10.
    Piro L D, Carrera C J, Carson D A, Buffer E: Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine.N Engl JMed 322, 1117 (1990).Google Scholar
  11. 11.
    Ochs J, Abromowitch M, Rudnick S, Murphy: Phase I-II study of recombinant alpha-2 interferon against advanced leukemia and lymphoma in children.J Clin Oncol 4, 883 (1986).PubMedGoogle Scholar
  12. 12.
    Einhom S, Öst Å, Grandér D, Grimfors G, Björkholm M: Prolonged remission induced by interferon-α in a patient with refractory T-cell ALL.Lancet 335, 794 (1990).CrossRefGoogle Scholar
  13. 13.
    Gaynor E R, Fisher R I: Clinical trials of s-interferon in the treatment of non-Hodgkin’s lymphoma.Sem Oncol 18 (suppl. 7), 12 (1991).Google Scholar
  14. 14.
    Foon K A, Sherwin S A, Alsams P G, Long D L, Fer M F, Stevenson H C, Ochs J J, Bottino G C, Schoenberger C S, Zeffren J, Jaffe E S, Oldham R K: Treatment of advanced non-Hodgkin’s lymphoma with recombinant leukocyte A interferon.N Engl J Med 311, 1148 (1984).PubMedGoogle Scholar
  15. 15.
    Smalley R V, Andersen J W, Hawkins M J, Bhide V, O’Connell M J, Oken M M, Borden E C: Interferon alfa combined with cytotoxic chemotherapy for patients with non-Hodgkin's lymphoma.New Engl J Med 327, 1336 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    Österborg A, Björkhotm M, Björkman M : Natural interferonalpha in combination with melphalan/prednisone (MPBFN) versus melphalardprednisone (MP) in the treatment of multiple myeloma stages II and III. - A randomized study from the Myeloma Group of Central Sweden (MGCS).Blood, in press (1993).Google Scholar
  17. 17.
    Mandelli F, Guslielmi C, MartelliM: Multiple myeloma and lymphomas, in Baron S, Coppenhauer D H, Dianzani F, Fleischmann W R Jr, Highes T K Jr, Klimpel G R, Niesel D W, Stanton G J, Tyring S K (eds):Interferon: Principles and medical applications, pp.501–517. The University of Texas (1992).Google Scholar
  18. 18.
    Strander H, Oberg K: Clinical use of interferons: solid tumor, in Baron S, Coppenhauer D H, Dianzani F, Fleischmann W R Jr, Highes T K Jr, Klimpel G R, Niesel D W, Stanton G J, Tyring S K (eds): Interferon: {atPrinciples and medical applications}, pp.533–561. The University of Texas (1992).Google Scholar
  19. 19.
    Kirkwood J M: Studies of interferons in the therapy of melanoma.Sere Oncol 18 (suppl. 7), 83 (1991).Google Scholar
  20. 20.
    Edsmyr F, Esposti P, Andersson L: Interferon therapy in disseminated renal cell carcinoma.Radiother Oncol 4 (suppl. 1), 21 (1985).CrossRefPubMedGoogle Scholar
  21. 21.
    Torti M F, Lure L B: Superficial bladder cancer. Risk of recurrence and potential role for interferon therapy.Cancer 59, 613 (1987).CrossRefPubMedGoogle Scholar
  22. 22.
    S travoravdi P, Belivanis J, Dimopoulos T,et al:The ultrastructure of the noninvolved urothelium of tumor-bearing patients before and after interferon treatment.J Interferon Res 12, 397 (1992).Google Scholar
  23. 23.
    Oberg K, Eriksson B: Medical treatment of neuroendocrine gut and pancreatic tumors.Acta Onco 128, 425 (1989).CrossRefGoogle Scholar
  24. 24.
    Voices E E, Weichselbaum R R, Ratain M J : PFL with escalating doses of interferon-alpha-2b (IFN) as neoadjuvant chemotherapy for stage IV head and neck cancer (HNC): a clinical and pharmacokinetic analysis.ASCA, abstract 693 (199t).Google Scholar
  25. 25.
    Dmitrovsky E, Bosl G J: Active cancer therapy combining 13-cis-re.finoic acid with interferon-α.J Natl Cancer Inst 84, 218 (1992).CrossRefPubMedGoogle Scholar
  26. 26.
    Paucker G, CanteU K, Henle W: Quantitative studies on viral interference in suspended L cells. III. Effect of interfeting viruses and interferon on the growth rate of cells.Virology 17, 324 (1962).CrossRefPubMedGoogle Scholar
  27. 27.
    Einhorn S, Strander H: Interferon therapy for neoplastic diseases in man.In vitro and in vivo studies, in Stinebring W R, Chapple P J (eds):Human interferon. Production and clinical use, pp. 159–174. Plenum Publ Corp (1978).Google Scholar
  28. 28.
    De Maeyer E, De Maeyer-Guignard J:lnterferons and other regulatorycytokines, pp. 1–448. New York, John Wiley and Sons (1988).Google Scholar
  29. 29.
    Lindahl P, Leary P, Gresser I: Enhancement of the expression of histocompatibility antigens of mouse lymphoid cells by interferonin vitro.Eur J lmmunol 4, 779 (1974).CrossRefGoogle Scholar
  30. 30.
    Blomgren H, Einhorn S: Lymphokine production by PHAstimulated human lymphocytes is enhanced by interferon.Int Arch Allergy Appl lmmuno 166, 173 (1981).Google Scholar
  31. 31.
    Yaron M, Yaron I, Gumri-Rotman D, Revel M, Lindner H R, Zor U: Stimulation of prostaglandin E production in cultured human fibroblasts by poly (I) poly(C) and human interferon.Nature 267, 457 (1977).CrossRefPubMedGoogle Scholar
  32. 32.
    Gresser I, Maury C, Brouty-Boyé D: Mechanism of the antitumor effect of interferon in mice.Nature 239, 167 (1972).CrossRefPubMedGoogle Scholar
  33. 33.
    Affabris E, Romeo G, Belardelli F, Jemma C, Mechti N, Gresser I, Rossi G B: 2,5-A synthetase activity does not increase in interferon-resistant Friend leukemia cell variants treated with α/ α interferon despite the presence of high-affinity receptor sites.Virology 125, 508 (1983).CrossRefPubMedGoogle Scholar
  34. 34.
    Einhorn S, Blomgren H, Jarstrand C, Strander H, Wasserman J: Influence of interferon-α therapy on functions of the human immune system, in De Maeyer E, Schellekens H (eds): Thebiology of the interferon system, pp.347–352. Amsterdam, Elsevier Biomedical Press (1983).Google Scholar
  35. 35.
    Einhom S, Åhre A, Blomgren H, JohanssonB, Mellstedt H, Strander H: Interferon and natural killer cell activity in multiple myeloma. Lack of correlation between interferoninduced enhancement of natural killer cell activity and clinical response to human interferon-α,lnt J Cancer 32, 167 (1982).Google Scholar
  36. 36.
    Yasui H, Proietti E, Vignaux F, Eid P, Gresser I: Inhibition by mouse α/α-interferon of the multiplication of α/ α-interferon resistant Friend erythroleukemia cells cocultured with mouse hepatocytes.Cancer Res 50, 3533 (1990).PubMedGoogle Scholar
  37. 37.
    Klein B, Zhang X G, Jourdan M, Content J, Houssiau F, Aarden L, Piechaczyck M, Bataille R: A paracrine rather than autocrine regulation of myeloma cell growth and differentiation by IL-6.Blood 73, 517 (1989).PubMedGoogle Scholar
  38. 38.
    Von Hoff D D: He’s not going to talk aboutin vitro predictive assays again, is he?J Natl Cancer lnst 82, 96 (1990).CrossRefGoogle Scholar
  39. 39.
    Grandtr D, Oberg K, Lundqvist M-L, Tiensuu Jansson E, Eriksson B, Einhorn S: Interferon-induced enhancement of 2′,5′-oligoadenytate synthetase in mid-gut carcinoid tumors.Lancet 336, 337 (1990).CrossRefGoogle Scholar
  40. 40.
    Rosenblum M G, Maxwell B L, Talpaz M, Kelleher P J, McCredie K B, Gutterman J U:In vivo sensitivity and resistance of CML cells to a-IFN: correlation with receptor binding and induction of 2′,5′-oligoadenylate synthetase.CancerRes 46, 4848 (1986).Google Scholar
  41. 41.
    Ferbus D, Khosravi S, Dumont J, Billard C:In vivo andin vitro induction of 2′-5′ oligoadenylate sythetase by interferonalpha in nodular non-Hodgkin’s lymphoma and correlation with the clinical response.J Biol Regul Homeost Agents 4, 127 (1991).Google Scholar
  42. 42.
    Epstein L B, Marcus S: Review of experience with interferon and drug sensitivity testing of ovarian carcinoma in semi-solid agar culture.Cancer Chemother Pharmac 6, 273 (1981).Google Scholar
  43. 43.
    Einhorn S, Fernberg J-O, Grandtr D, Lewensohn R: Interferon exerts a cytotoxic effect on primary human myeloma cells.Eur J Cancer 9, 1505 (1988).Google Scholar
  44. 44.
    Ostlund L, Einhorn S, Robtrt K-H, Juliusson G, Biberfeld P: Chronic B-lymphocytic leukemia cells proliferate and differentiate following exposure to interferonin vitro.Blood 67, 152 (1986).PubMedGoogle Scholar
  45. 45.
    Jonak G J, Knight E Jr: Selective reduction of c-myc mRNA in Daudi cells by human beta interferon.Proc Natl Acad Sci USA 81, 1747 (1984).CrossRefPubMedGoogle Scholar
  46. 46.
    Resnitsky D, Tiefenbrun N, Berissi H, Kimchi A: Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells.Proc NatlAcad Sci USA 89, 402 (1992).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Stefan Einhorn
    • 1
  • Hans Strander
    • 1
  1. 1.Department of OncologyRadiumhemmet, Karolinska HospitalStockholmSweden

Personalised recommendations