Small-Scale variability of metals in soil and composite sampling

  • Jürgen W. Einax
  • Jörg Kraft
Research Articles


Soil pollution data is also strongly scattering at small scale. Sampling of composite samples, therefore, is recommended for pollution assessment. Different statistical methods are available to provide information about the accuracy of the sampling process. Autocorrelation and variogram analysis can be applied to investigate spatial relationships. Analysis of variance is a useful method for homogeneity testing. The main source of the total measurement uncertainty is the uncertainty arising from sampling. The sample mass required for analysis can also be estimated using an analysis of variance. The number of increments to be taken for a composite sample can be estimated by means of simple statistical formulae. Analytical results of composite samples obtained from different fusion procedures of increments can be compared by means of multiple mean comparison. The applicability of statistical methods and their advantages are demonstrated for a case study investigating metals in soil at a very small spatial scale. The paper describes important statistical tools for the quantitative assessment of the sampling process. Detailed results clearly depend on the purpose of sampling, the spatial scale of the object under investigation and the specific case study, and have to be determined for each particular case.


Sampling soil small-scale variability statistical methods uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Einax JW, Zwanziger HW, Geiß S (1997): Chemometrics in environmental analysis. VCH, Weinheim, pp. 113–120Google Scholar
  2. [2]
    Rau D, Schramm H, Wunderlich J (2000): Die Leitbodenformen Thüringens: Legendenkartei zu den “Bodengeologischen Über-sichtskarten” Thüringens im Maßstab 1:100000. In: Thüringer Landesanstalt für Geologie (Hrsg.): Geowissenschaftliche Mitteilungen von Thüringen, 2. überarb. und erw. Aufl., Thüringer Landeanstalt für Bodenforschung, Weimar, p. 34Google Scholar
  3. [3]
    DIN ISO 11466 (1997): Bodenbeschaffenheit — Extraktion in Königswasser löslicher Spurenelemente. Beuth, BerlinGoogle Scholar
  4. [4]
    Sachs L (1992): Angewandte Statistik. 7. Aufl., Springer, Berlin, pp. 426–432Google Scholar
  5. [5]
    Doerffel K, Wundrack A (1986): Korrelationsfunktionen in der Analytik. In: Fresenius W et al. (Hrsg.): Analytiker-Taschenbuch. Bd. 6, Akademie-Verlag, Berlin, pp. 37–63Google Scholar
  6. [6]
    Akin H, Siemes H (1988): Praktische Geostatistik. Springer, Berlin, pp. 26–52Google Scholar
  7. [7]
    Einax JW, Machelett B, Geiß S, Danzer K (1992): Chemometric investigations on the representativity of soil sampling. Fresenius J Anal Chem342, 267–272CrossRefGoogle Scholar
  8. [8]
    Henrion R, Henrion G, Szukalski K, Fabian I, Thiesies A, Heininger P (1991): Parametric and bootstrap estimations of confidence intervals for representative sample weights. Fresenius J Anal Chem340, 1–5CrossRefGoogle Scholar
  9. [9]
    Doerffel K (1990): Statistik in der analytischen Chemie. 5. Aufl., Dt. Verlag für Grundstoffindustrie, Leipzig, pp. 135–141Google Scholar
  10. [10]
    Einax JW (1998): Probennahme in der Umweltanalytik — Chemometrische Aspekte. In: Günzler H et al. (Hrsg.): Analytiker-Taschenbuch. Bd. 19, Springer, Berlin, Heidelberg, New York, pp. 113–135Google Scholar
  11. [11]
    DIN ISO 11464 (1996): Bodenbeschaffenheit — Probenvor-behandlung für physikalisch-chemische Untersuchungen. Beuth, BerlinGoogle Scholar
  12. [12]
    Truckenbrodt D, Einax JW (1995): Sampling representativity and homogeneity of river sediments. Fresenius J Anal Chem352, 437–443CrossRefGoogle Scholar
  13. [13]
    Milliken GA, Johnson DE (1984): Analysis of messy data, Vol. I: Designed experiments. Lifetime Learning Publications, Belmont, California, 473 pp.Google Scholar
  14. [14]
    Kraft G (1980): Probenahme an festen Stoffen. In: Kienitz, H. et al. (Hrsg.): Analytiker-Taschenbuch. Bd. 1, Akademie-Verlag, Berlin, pp. 3–17Google Scholar
  15. [15]
    E DIN ISO 10381–2 (1996): Bodenbeschaffenheit — Probenahme — Teil 2: Anleitung für Probenahmeverfahren. Beuth, BerlinGoogle Scholar
  16. [16]
    StatSoft, Inc. (1999): STATISTICA für Windows. Tulsa, OKGoogle Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  1. 1.Institute of Inorganic and Analytical ChemistryFriedrich Schiller University of JenaJenaGermany

Personalised recommendations