Concentration of LAS and boron in the itter

Comparison of measured data with results obtained by simulation with the GREAT-ER software
  • Frank Roland Schröder
  • Carsten Schulze
  • Michael Matthies
Research Articles


The GREAT-ER software was used to calculate linear alkylbenzene sulphonate [LAS] and boron concentrations in the Itter stream in North Rhine-Westfalia, Germany. The aim was to investigate the predictive strength of this newly developed tool and to compare its results to measured data. Substance-specific input data which were used in this scenario were partly generic (e.g. LAS and sodium perborate tetrahydrate consumption figures for Germany) and partly (site-)specific data (e.g. half-life time for LAS elimination). The comparison with the measured data reveals that the model predictions for LAS and boron are correct at least within a factor of two, only if generic German consumption data is applied. By using refined input data, the accuracy can be increased further.


Boron Geographic Information Systems (GIS) GIS GREAT-ER software LAS linear alkylbenzene sulphonate (LAS) research articles river fate modelling software GREAT-ER 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BRW (1997): BRW Jahresbericht (annual report) 1996. Bergisch-Rheinischer Wasserverband, Haan, GermanyGoogle Scholar
  2. BRW (2000): Personal communication. Bergisch-Rheinischer Wasserverband, Haan, GermanyGoogle Scholar
  3. DAGSt (1998): Surfactants statistics 1996. DAGSt, 20.07.98Google Scholar
  4. Dietz F (1975): Die Borkonzentration in Wässern als Indikator für Gewässerbelastung. gwf-Wasser/Abwasser116 (7) 301–307Google Scholar
  5. ECETOC (1999): GREAT-ER 1.0 CD. Available at M.Holt at ECETOC, Av. E. Van Nieuwenhuyse 4, Bte 6, B-1160 Brussels, BelgiumGoogle Scholar
  6. European Union (1996): EUSES-the European Union System for the Evaluation of Substances. Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Available from European Chemicals Bureau, Ispra, ItalyGoogle Scholar
  7. European Union (1996b): Technical Guidance Document in Support of the Commission Directive 93/67/EEC on Risk Assessment for new notified Substances and Commission Regulation No 1488/94 on Risk Assessment of existing Substances. Commission of the European Union; Brussels, BelgiumGoogle Scholar
  8. Feijtel TCJ, Boeije G, Matthies M, Young A, Morris G, Gandolfi C., Hansen B, Fox K, Holt M, Koch V, Schröder R, Cassani G, Schowanek D, Rosenblom J, Niessen H (1997): Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER. Chemosphere34 (11) 2351–2374CrossRefGoogle Scholar
  9. Haberer K (1996): Bor und die Trinkwasserversorgung in Deutschland. gwf-Wasser/Abwasser137 (7) 364–370Google Scholar
  10. Holt MS, Fox KK, Burford M, Daniel M, Buckland H (1998): UK monitoring study on the removal of linear alkylbenzene sulphonate in trickling filter type sewage treatment plants. Sci Tot Environ211, 255–269CrossRefGoogle Scholar
  11. IKW (1998): Detergent ingredients statistics, IKW, 1998 Matthies M, Koormann F, Schulze C, Wagner JO (1999): GREATER a geography-referenced regional exposure assessment tool for European rivers. In: Geller W (Ed): River Basin Management-Challenge to Research. UFZ-Bericht 31/99Google Scholar
  12. Metzner G, Lind G, Nitschke L (1999): Survey of boron levels in aquatic environments in Germany. Tenside, Surf Det36 (6) 364–378Google Scholar
  13. Reichensperger U (1995): Verhalten des Tensids LAS und anderer abwasserrelevanter Inhaltsstoffe in einer Kläranlage und angrenzendem Vorfluter. Diplomarbeit Fachhochschule Lippe, GermanyGoogle Scholar
  14. Schröder FR (1995): Concentrations of anionic surfactants in receiving riverine water. Tenside, Surf Det32 (6) 492–497Google Scholar
  15. Schröder FR, Reichensperger U (1998): Computer models as important tools for the environmental exposure analysis of surfactants. CLER Review4 (1) 52–59Google Scholar
  16. Schröder FR, Grob M, Besançon W (2000): Chemical monitoring of linear alkylbenzene sulphonate, boron and water quality relevant parameters in a small catchment. Chemosphere (submitted)Google Scholar
  17. Schröder FR, Schmitt M, Reichensperger U (2000): Effect of waste water treatment technology on the elimination of anionic surfactants. Waste Management19 (1999) 125–131Google Scholar
  18. Schulze C, Matthies M, Trapp S, Schröder FR (1999): Georeferenced fate modelling of LAS in the Itter stream. Chemosphere39 (11) 1833–1852CrossRefGoogle Scholar
  19. Trapp S, Matthies M (1998): Chemodynamics and Environmental Modelling. Springer Verlag, Berlin, GermanyGoogle Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  1. 1.Henkel KGaADüsseldorfGermany
  2. 2.Institute of Environmental Systems ResearchUniversity of OsnabrückGermany

Personalised recommendations