Advertisement

Environmental Science and Pollution Research

, Volume 7, Issue 4, pp 191–194 | Cite as

Soil phytoremediation from the breakdown products of the chemical warfare agent, yperite

  • Elena A. Zakharova
  • Paul V. Kosterin
  • Vitaly V. Brudnik
  • Alexander A. Shcherbakov
  • Alexander A. Ponomaryov
  • Lubov F. Shcherbakova
  • Vladimir G. Mandich
  • Eugenii E. Fedorov
  • Vladimir V. Ignatov
Research Articles

Abstract

A plant-based bioremediation (phytoremediation) strategy has been developed and shown to be effective for the clean-up of soil contaminated by the breakdown products of the chemical warfare agent (CWA), yperite. The method involves exploiting the plant growth hormone, indole-3-acetic acid (IAA), to intensify the phytoremediation. For determination of the yperite breakdown products, gas chromatography is used.

Soil and plant samples were analysed with a gas chromatograph fitted with an atomic emission detector. The method of standard-free determination was employed to identify sulphur-containing substances (SCSs). A series of soil tests was conducted, which showed that the level of SCSs decreased 4, 8, and more than 20-fold compared with that found in contaminated soil. This decrease was dependent upon the IAA concentrations used for plant treatment. The treated plants accumulated 2.7 to 2.9-fold larger amounts of the SCSs than did the untreated plants. Owing to its simplicity, environmental safety and inexpensiveness, the method can be recommended for the restoration of soil fertility in areas of storage and destruction of blister CWAs.

Keywords

CWA phytoremediation yperite breakdown chemical warfare agents (CWA) sulphur-containing substances contaminated soils destruction plant growth hormone IAA indole-3-acetic acid (IAA), IAA soil phytoremediation 

Abbreviations

Au

Arbitrary Unit

CWA

Chemical Warfare Agent

RM

Reaction Mass

SCS

Sulphur-Containing Substance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gormai, V.V.;Shapovalov, V.N.;Shantokha, A.V. (1994): On the problem of degradation and utilization of adamsite. Ross. Khim. Z.38. 39–42 (in Russian)Google Scholar
  2. [2]
    Boronin, A.M.;Sakharovskii, V.G.;Starovoitov, I.I.;Kashparov, K.I.;Zyakun, A.M.;Shvetsov, V.N.;Morozova, K.M.;Nechaev, I.A.;Tugushov, V.I.;Kuz’min, N.P.;Kochergin, A.I. (1996): Principles of complex ecologicallysafe technology of mustard-gas destruction. Appl. Biochem. Microbiol.1, 61–68 (in Russian)Google Scholar
  3. [3]
    Sadowsky, M.J. (1998): Phytoremediation: past promises and future practices. In: Abstracts of the Eighth International Symposium on Microbial Ecology (ISME-8), 9–14 August 1998, Halifax, Canada, pp. 288–289Google Scholar
  4. [4]
    Nellessen, J.E.;Fletcher, J.S. (1992): UTAB: a computer database on residues of xenobiotic organic chemicals and heavy metals in plants. J. Chem. Inf. Comput. Sci.32, 144–148Google Scholar
  5. [5]
    Singh, G.;Dowman, A.;Higginson, F.R.;Fenton, I.C. (1992): Translocation of aged cyclodiene insecticide residues from soil into forage crops and pastures at various growth stages under field conditions. J. Env. Sci. Health (B)103, 13–15Google Scholar
  6. [6]
    Stomp, A.-M.;Han, K.-H.;Wilbert, S. (1994): Genetic strategies for enhancing phytoremediation. Ann. N.-Y. Acad. Sci.721, 481–491CrossRefGoogle Scholar
  7. [7]
    Flathman, P.E.;Lanza, G.R. (1998): Phytoremediation, current views on an emerging green technology. J. Soil Contam.7, 415–432CrossRefGoogle Scholar
  8. [8]
    Schnoor, J.L.;Licht, L.A.;Mccutcheon, S.C.;Wolfe, N.L.;Carreira, L.H. (1995): Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol.29, 318A-323ACrossRefGoogle Scholar
  9. [9]
    Pennington, J.C. (1988): Plant uptake of 2,4,6-trinitrotoluene, 4-amino,2,6-dinitrotoluene, and 2-amino-4,6-dinitrotoluene using14C-labeled and unlabeled compounds. US Army Engineer Waterways Experiment Station, Vicksburg, MississippiGoogle Scholar
  10. [10]
    Takahashi, N. (Ed.) (1986): Chemistry of Plant Hormones. CRC Press Inc., Boca Raton, FloridaGoogle Scholar
  11. [11]
    Ivanova, A.B.;Antsygina, L.L.;Yarin, A.Yu.(1999): Current trends in phytohormone research. Cytology41, 835–847 (in Russian)Google Scholar

Copyright information

© Ecomed Publishers 2000

Authors and Affiliations

  • Elena A. Zakharova
    • 1
  • Paul V. Kosterin
    • 1
  • Vitaly V. Brudnik
    • 2
  • Alexander A. Shcherbakov
    • 2
  • Alexander A. Ponomaryov
    • 2
  • Lubov F. Shcherbakova
    • 2
  • Vladimir G. Mandich
    • 2
  • Eugenii E. Fedorov
    • 1
  • Vladimir V. Ignatov
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of Sciences (IBPPM RAS)SaratovRussia
  2. 2.Saratov Military Institute of RadiologicalChemical and Biological DefenceSaratovRussia

Personalised recommendations