Advertisement

Marine macroalgae in polar regions as natural sources for volatile organohalogens

  • Frank Laturnus
Review and Research Results

Abstract

Marine macroalgae species from the polar regions were investigated for their importance as natural sources of volatile halogenated compounds released into the biosphere. Several different halogenated C1 to C4 hydrocarbons were identified and their release rates determined. The compounds contained mainly bromine and iodine, and form was the dominant compound released. Although an annual atmospheric input of approximately 108−1010 g bromine and 107−108 g iodine was calculated from the release rates, marine macroalgae are apparently not the major source on a global scale, as the release is up to four orders of magnitude lower than a presumed annual flow from the oceans. Despite this, macroalgae may be more important on a local scale due to their occurrence at a high biomass in the coastal regions. The present paper gives an overview about studies done on the release of volatile halocarbons by macroalgae from polar regions. Furthermore, the function of these compounds in the macroalgal metabolism is discussed.

Keywords

Algal metabolism bromoform marine macroalgae methyl halides polar regions volatile halocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Crutzen, P.J.; Arnold, F. (1986): Nitric acid cloud formation in the cold Antarctic stratosphere: A major cause for the springtime ozone hole. Nature (London)324, 651–655CrossRefGoogle Scholar
  2. [2]
    Solomon, S. (1990): Progress towards a quantitative understanding of Antarctic ozone depletion. Nature (London)347, 347–354CrossRefGoogle Scholar
  3. [3]
    Anderson, J.G.; Toohey, D.W.; Brune, W.H. (1991): Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science251, 39–41CrossRefGoogle Scholar
  4. [4]
    UNEP (1987): The Montreal Protocol on substances that deplete the ozone layer. United Nations Environment Programme (UNEP), Nairobi, KenyaGoogle Scholar
  5. [5]
    UNEP (1998): Environmental effects of ozone depletion: 1998 assessment. United Nations Environment Programme (UNEP), 192 pp.Google Scholar
  6. [6]
    Showstack, R. (1998): Ozone layer is on slow road to recovery, new science assessment indicates. EOS79, 317–318CrossRefGoogle Scholar
  7. [7]
    Spurgeon, D. (1997): Ozone treaty must tackle CFC smuggling. Science389, 219Google Scholar
  8. [8]
    Manö, S.; Andreae, M.O. (1994): Emission of methyl bromide from biomass burning. Science263, 1255–1257CrossRefGoogle Scholar
  9. [9]
    Gribble, G.W. (1992): Sources of halogenated alkanes. Chem. Engineer. News70, 3Google Scholar
  10. [10]
    Laturnus, F.; Mehrtens, G.; Grøn, C. (1995): Haloperoxidaselike activity in spruce forest soil — a source of volatile halogenated organic compounds? Chemosphere31, 3709–3719CrossRefGoogle Scholar
  11. [11]
    Hoekstra, E.J.; deLeer, E.W.B.; Brinkman, U.A.T. (1999): Natural formation of chloroform and brominated trihalomethanes in soil. Environ. Sci Technol.32, 3724–3729CrossRefGoogle Scholar
  12. [12]
    Haselmann, K.F.; Ketola, R.A.; Laturnus, F.; Laurttsen, F.R.; Grøn, C. (2000): Occurrence and formation of chloroform at Danish forest sites. Atmos. Environ.34, 187–193CrossRefGoogle Scholar
  13. [13]
    Khalil, M.A.K.; Rasmussen, R.A.; Shearer, M.J.; Chen, Z.; Yao, H.; Yang, J. (1998): Emission of methane, nitrous oxide, and other trace gases from rice fields in China. J. Geophys. Res.103, 25241–25250CrossRefGoogle Scholar
  14. [14]
    Lovelock, J.E. (1975): Natural halocarbons in the air and in the sea. Nature (London)256, 192–193CrossRefGoogle Scholar
  15. [15]
    Singh, H.B.; Salas, L.J.; Stiles, R.E. (1983): Methyl halides in and over the Eastern pacific (40dgN-32°S). J. Geophys. Res.88, 3684–3690CrossRefGoogle Scholar
  16. [16]
    Cicerone, R.J.; Heidt, L.E.; Pollack, W.H. (1988): Measurements of atmospheric methyl bromide and bromoform. J. Geophys. Res.93, 3745–3749CrossRefGoogle Scholar
  17. [17]
    Laturnus, F.; Wiencke, C.; Klöser, H. (1996): Antarctic macroalgae — sources of volatile halogenated organic compounds. Mar. Environ. Res.41, 169–181CrossRefGoogle Scholar
  18. [18]
    Laturnus, F. (1996): Volatile halocarbons released from Arctic macroalgae. Mar. Chem.55, 359–366CrossRefGoogle Scholar
  19. [19]
    Goodwin, K.D.; North, J.W.; Lindstrom, M.E. (1997): Production of bromoform and dibromomethane by giant kelp: factors affecting release and comparison to anthropogenic bromine sources. Limnol. Oceanogr.42, 1725–1734Google Scholar
  20. [20]
    Sturges, W.T.; Sullivan, C.W.; Schnell, R.C.; Heidt, L.E.; Pollack, W.H. (1993): Bromoalkane production by Antarctic ice algae. Tellus45, 120–126CrossRefGoogle Scholar
  21. [21]
    Fogelqvist, E.; Tanhua, T. (1995): Iodinated C1−C4 hydrocarbons released from ice algae in Antarctica. In: Grimvall, A.; deLeer, E.W.B. (Eds.): Naturally-produced organohalogens. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 295Google Scholar
  22. [22]
    Tokarczyk, R.; Moore, R.M. (1994): Production of volatile organohalogens by phytoplankon cultures. Geophys. Res. Letts.21, 285–288CrossRefGoogle Scholar
  23. [23]
    Scarratt, M.G.; Moore, R.M. (1998): Production of methyl bromide and methyl chloride in laboratory cultures of marine phytoplankton II. Mar. Chem.59, 311–320CrossRefGoogle Scholar
  24. [24]
    Laturnus, F. (1995): Release of volatile halogenated organic compounds by unialgal cultures of polar macroalgae. Chemosphere31, 3387–3395CrossRefGoogle Scholar
  25. [25]
    Slaets, S.; Laturnus, F.; Adams, F.C. (1999): Microwave induced plasma atomic emission spectrometry: a suitable detection system for the determination of volatile halocarbons. Fresenius J. Anal. Chem.364, 133–140CrossRefGoogle Scholar
  26. [26]
    Zafiriou, O.C. (1974): Photochemistry of halogens in the marine atmosphere. J. Geophys. Res.79, 2730–2732CrossRefGoogle Scholar
  27. [27]
    Khalil, M.A.K.; Rasmussen, R.A.; Gunawardena, R. (1993): Atmospheric methyl bromide: trends and global mass balance. J. Geophys. Res.98, 2887–2896CrossRefGoogle Scholar
  28. [28]
    Butler, J.H. (1995): Methyl bromide under scrutiny. Nature (London)376, 469–470CrossRefGoogle Scholar
  29. [29]
    EPA (1995). MBTOC assessment report, US Environmental Protection Agency, Methyl Bromide Technical CommitteeGoogle Scholar
  30. [30]
    Laturnus, F.; Adams, F.C.; Wiencke, C. (1998): Methyl halides from Antarctic macroalgae. Geophys. Res. Letts.25, 773–776CrossRefGoogle Scholar
  31. [31]
    Manley, S.L.; Dastoor, M.N. (1987): Methyl halide (CH3X) production from giant kelp,Macrocystis, and estimates of global CH3X production by kelp. Limnol. Oceanogr.32, 709–715CrossRefGoogle Scholar
  32. [32]
    Class, T.; Ballschmiter, K. (1988): Chemistry of organic tracers in air: sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic Ocean. J. Atmos. Chem.6, 35–46CrossRefGoogle Scholar
  33. [33]
    Schall, C.; Heumann, K.G.; deMora, S.; Lee, P. (1996): Volatile halogenated compounds in ponds on the McMurdo ice shelf. Antarc. Sci. 8, 45–49Google Scholar
  34. [34]
    Chameides, W.L.; Davis, D.D. (1980): Iodine: its possible role in tropospheric photochemistry. J. Geophys. Res.85, 7383–7398CrossRefGoogle Scholar
  35. [35]
    Whttehead, D.C. (1985): The distribution and transformation of iodine in the environment. Environ. Intern.10, 321–329CrossRefGoogle Scholar
  36. [36]
    Giese, B.; Laturnus, F.; Adams, F.C.; Wiencke, C. (1999): Release of volatile C1−C4 by marine macroalgae from various climate zones. Environ. Sci. Technol.33, 2432–2439CrossRefGoogle Scholar
  37. [37]
    Klöser, H.; Ferreyra, G.; Schloss, I.; Mercuri, G.; Laturnus, F.; Curtosi, T. (1993): Seasonal variation of growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). J. Mar. Syst.4, 289–301CrossRefGoogle Scholar
  38. [38]
    Wiencke, C. (1996): Recent advances in the investigation of Antarctic macroalgae. Polar Biol.16, 231–240CrossRefGoogle Scholar
  39. [39]
    Laturnus, F.; Giese, B.; Wiencke, C.; Adams, F.C. (2000): Lowmolecular-weight organoiodine and organobromine compounds released by polar macroalgae — The influence of abiotic factors. Fresenius J. Anal. Chem.368, 297–302CrossRefGoogle Scholar
  40. [40]
    Laturnus, F.; Wiencke, C.; Adams, F.C. (1998): Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae. Mar. Environ. Res.45, 285–294CrossRefGoogle Scholar
  41. [41]
    Fenical, W. (1975): Halogenation in the Rhodophyta — a review. J. Phycol.11, 245–259Google Scholar
  42. [42]
    McConnell, O.; Fenical, W. (1977): Halogen chemistry of the red alga Asparagopsis. Phytochemistry16, 367–374CrossRefGoogle Scholar
  43. [43]
    Gibson, C.I.; Tone, F.C.; Wilkinson, P.; Blaylock, J.W. (1979): Toxicity and effects of bromoform on five marine species. Ozone Sci. Engineer.1, 47–54CrossRefGoogle Scholar
  44. [44]
    Iken, K. (1995): Nahrungsbeziehungen zwischen antarktischen Makroalgen und Herbivoren. In: Wiencke, C.; Arntz, W.F (Eds.): Benthos in Polaren Gewässern. Rep Polar Res 155, Alfred Wegener Institut for Polar and Marine Research, Germany, p. 21–23Google Scholar
  45. [45]
    Gribble, G.W. (1994): Natural organohalogens. J. Chem. Educ.71, 907–911CrossRefGoogle Scholar
  46. [46]
    Pedersén, M.; Collen, J.; Abrahamsson, K.; Ekdahl, A. (1996): Production of halocarbons from seaweeds: an oxidative stress reaction? Scienta Marina60, 257–263Google Scholar
  47. [47]
    Küpper, F.C.; Schweigert, N.; Ar Gall, E.; Legendre, J.M.; Velter, H.; Kloareg, B. (1998): Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta207, 163–171CrossRefGoogle Scholar
  48. [48]
    Vilter, H. (1995): Vanadium-dependent haloperoxidases. In: Sigel, H.; Sigel, A. (Eds.): Vanadium and its role in life: Metal ions in biological systems 31. Marcel Dekker, New York, pp. 325–362Google Scholar
  49. [49]
    Wiencke, C. (1990): Seasonality of brown macroalgae from Antarctica — A long-term culture study under fluctuating Antarctic day-lengths. Polar Biol.10, 589–600CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2001

Authors and Affiliations

  • Frank Laturnus
    • 1
  1. 1.Department of Plant Biology and BiogeochemistryRisø National LaboratoryRoskildeDenmark

Personalised recommendations