Lithuanian Mathematical Journal

, Volume 36, Issue 3, pp 263–281 | Cite as

Crossed simplicial groups of framed braids and mapping class groups of surfaces

  • R. Krasauskas


Exact Sequence Fundamental Group Simplicial Group Braid Group Homotopy Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Birman, On braid groups,Comm. Pure Appl. Math.,22, 41–72 (1969).CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    J. S. Birman, Mapping class groups and their relationship to braid groups,Comm. Pure Appl. Math.,22, 213–238 (1969).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    E. Fadell, L. Neuwirth, Configuration spaces,Math. Scand.,10, 111–118 (1968).MathSciNetGoogle Scholar
  4. 4.
    Z. Fiedorowicz and J.-L. Loday, Crossed simplicial groups and their associated homology,Trans. Amer. Math. Soc,326, 57–87 (1991).CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    D. M. Kan, On homotopy theory and c.s.s. groups,Ann. Math.,68, 38–53 (1958).CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. M. Kan, A relation between CW-complexes and free c.s.s. groups,Amer. J. Math. 81, 512–528 (1959).CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    R. Krasauskas, Skew-simplicial groups,Lith. Math. J.,27, 47–54 (1987).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    R. Krasauskas, Simplicial structures on braid and homeotopy groups of surfaces, in:34-th Conf. of Lithuanian Math. Soc, Vilnius (1993), pp. 53–54.Google Scholar
  9. 9.
    W. Magnus, Über Automorphismen von Fundamentalgrupper berandeter Flächen,Math. Ann.,109, 617–646 (1934).CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    J. P. May,Simplicial Objects in Algebraic Topology, Princeton, Van Nostrand (1967).Google Scholar
  11. 11.
    G. P. Scott, The space of homeomorphisms of a 2-manitold,Topology,9, 97–109 (1970).CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    D. J. Sprows, Homeotopy groups of compact 2-manifolds,Fundamenta Mathematicae,40, 99–103 (1975).MathSciNetGoogle Scholar
  13. 13.
    R. M. Switzer,Algebraic Topology-Homotopy and Homology, Springer-Verlag (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. Krasauskas
    • 1
  1. 1.Vilnius UniversityVilniusLithuania

Personalised recommendations