Journal of Genetics

, 49:126 | Cite as

Genetics and cytology ofDrosophila subobscura

IV. An extreme example of delay in gene action, causing sterility
  • Helen Spurway


An autosomal recessive gene,grandchildless, causes no change in the phenotype of flies homozygous for it. But in the progeny of homozygous females, no matter by what father, all females have rudimentary ovaries, and are sterile, while 98·4% of the males have no testes. The gene has been assigned to a linkage group. Whilst it segregated normally on outcrossing, it was possible to build up a balanced line in which all or almost all individuals were heterozygous or homozygous for it.


Balance Line Sterile Culture Original Line Internal Genitalia Drosophila Subobscura 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bird, M. J. (1948). The genetics and cytology ofDrosophila subobscura. V. Genital abnormalities associated with sex-linked recessivecrossveinless 2.J. Genet. 49, 141–50.PubMedGoogle Scholar
  2. Bridges, C. B. & Brehme, K. S. (1944). The mutants ofDrosophila melanogaster. Publ. Carneg. Instn. Wash. no. 552.Google Scholar
  3. Dobzhansky, T. (1935). Maternal effect as a cause of the difference between the reciprocal crosses inDrosophila pseudo-obscura.Proc. Nat. Acad. Sci., Wash.,21, 443–6.CrossRefGoogle Scholar
  4. Dobzhansky, T. (1935a). Further data on maternal effects inDrosophila pseudo-obscura hybrids.Proc. Nat. Acad. Sci., Wash.,21, 566–70.CrossRefGoogle Scholar
  5. Dobzhansky, T. (1937). Further data onDrosophila miranda and its hybrids withDrosophila pseudoobscura.J. Genet. 34, 135–51.CrossRefGoogle Scholar
  6. Drosophila Information Service (D.I.S.). Carnegie Institution of Washington, nos. 17–21.Google Scholar
  7. Gordon, C. (1936). the frequency of heterozygosis in free-living populations ofDrosophila melanogaster andDrosophila subobscura.J. Genet. 33, 26–60.Google Scholar
  8. Gordon, C. &Spurway, H. &Street, P. A. R. (1939). An analysis of three wild populations ofDrosophila subobscura.J. Genet. 38, 37–90.CrossRefGoogle Scholar
  9. Hadorn, E. (1946). Mutationsversuche mit Chemikalien anDrosophila. I. Wirkung von Colchicin auf transplantierte Larven-Ovarien nach Behandlungin vitro.Rev. suisse Zool. 53, 486–94.Google Scholar
  10. Haldane, J. B. S. (1932). The time of action of genes and its bearing on some evolutionary problems.Amer. Nat. 66, 5–24.CrossRefGoogle Scholar
  11. Hammond, J. (1934). The inheritance of fertility in the rabbit.Harper Adams Util. Poult. J. 19, Poultry and Rabbit Conference Number.Google Scholar
  12. Penrose, L. S. (1940). The grandchildren of consanguineous unions.Trans. Roy. Soc. Can. Sect. v, pp. 93–7.Google Scholar
  13. Penrose, L. S. (1946). On the familial appearance of maternal and foetal incompatibility.Ann. Eugen., Lond. 13, 141–5.Google Scholar
  14. Philip, U., Rendel, J. M., Spurway, H. &Haldane, J. B. S. (1944). Genetics and karyology ofDrosophila subobscura.Nature, Lond.,154, 260.CrossRefGoogle Scholar
  15. Redfield, H. (1926). The maternal inheritance of a sex-limited lethal effect inDrosophila melanogaster.Genetics,11, 482–502.PubMedGoogle Scholar
  16. Rendel, J. M. &Suley, A. C. E. (1948). Genetics and cytology ofDrosophila subobscura. III. Transplantation Experiments betweenD. subobscura andD. melanogaster.J. Genet 49, 38–41.CrossRefPubMedGoogle Scholar
  17. Spurway, H. (1945). The genetics and cytology ofDrosophila subobscura. I. Element A. Sex-linked mutants and their standard order.J. Genet. 46, 268–86.CrossRefGoogle Scholar
  18. Sturtevant, A. H. (1946). Intersexes dependent on a maternal effect in hybrids betweendrosophila repleta andDrosophila neorepleta.Proc. Nat. Acad. Sci., Wash. 32, 84–7.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1948

Authors and Affiliations

  • Helen Spurway
    • 1
  1. 1.Department of BiometryUniversity CollegeLondon

Personalised recommendations