Graphs and Combinatorics

, Volume 10, Issue 2–4, pp 269–270 | Cite as

About a conjecture on the centers of chordal graphs

  • K. S. Parvathy
  • A. Remadevi
  • A. Vijayakumar


In this paper, a conjecture of G.J. Chang, that d(C(G)) ≤2 for any connected chordal graphG withd(G) = 2r(G) - 2, is disproved.


Research Fellowship Planar Graph Connected Graph Complete Graph Numerous Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chang, G.J.: Centers of chordal graphs. Graphs and Combinatorics7, 305–313 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Laskar, R. and Shier, D.: On powers and centers of chordal graphs, Disc. Appld. Math.6, 139–147 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Nieminen, J.: Distance center and centroid of a median graph. J. Franklin Inst.323, 89–94 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Prabir Das apd Rao, S.B.: Center graphs of chordal graphs. Proc. of the Seminar on Combin. and Applns., ISI, 81-94 (1982)Google Scholar
  5. 5.
    Proskurowski, A.: Centers of 2-trees. Annals of Disc. Math.9, 1–5 (1980)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Proskurowski, A.: Centers of maximal outer planar graphs. J. Graph. Theory4 (2), 75–79 (1980)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Truszcynski, M.: Centers and centroids of unicyclic graphs. Math. Slovaca,35, 223–228 (1985)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • K. S. Parvathy
    • 1
  • A. Remadevi
    • 1
  • A. Vijayakumar
    • 1
  1. 1.Department of Mathematics and StatisticsCochin University of Science and TechnologyCochinIndia

Personalised recommendations