Environmental Science and Pollution Research

, Volume 5, Issue 4, pp 202–208 | Cite as

Distribution of14C-TNT and derivatives in different biochemical compartments ofPhaseolus vulgaris

  • Christian Sens
  • Petra Scheidemann
  • Andreas Klunk
  • Dietrich Werner
Research Articles: Chemical Warefare Agents


14C-TNT was used to quantify the uptake rate and metabolic turnover of TNT inPhaseolus vulgaris. Seventeen plants were analysed by a special cell fractionation method with polar and nonpolar solvents and enzymes. We obtained three cytoplasmic fractions and five cell wall derived fractions. The recovery rate was 72% as measured by liquid scintillation counting.14C partitioned almost in equal amounts with approximately 50% in the cytoplasm and in the cell wall. The majority of the TNT-metabolites are present in the cytoplasm as was shown by GC/ ECD and thin layer chromatography. The14C in the cell wall is bound probably resulting in long-term immobilisation of these metabolites. We conclude that plants may also be a model for nitroaromatic turnover and immobilisation in soil components.


Cell wall fractionation nitroaromatic compounds in plants Phaseolus vulgaris phytoremediation trinitrotoluene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajello, L. (1957): Cultural methods for human-pathogenic fungi. J. Chron. Dis.5, 545–551CrossRefGoogle Scholar
  2. Arjmand, M.;Sandermann, H.(1986): Plant Biochemistry of Xenobiotics. Mineralization of chloraniline/lignin metabolites from wheat by the white-rot fungus,Phanaerochaete chrysosporium. Z. Naturforsch.41c, 206–214Google Scholar
  3. Biological Analytical Manual (1969), Food and Drug Administration, PHS, WashingtonGoogle Scholar
  4. Bumpus, J.A.;Tien, M.;Wright, D.;Aust, S.D. (1985): Oxidation of persistent environmental pollutants by a white rot fungus. Science228, 1434–1436CrossRefGoogle Scholar
  5. Cataldo, D.A.; Harvey, S.D., Fellows, R.J.; Bean, R.M.; McVeety, B.D.(1989): An evaluation of the environmental fate and behavior of munitions material (TNT, RDX) in soil and plant systems. Pacific Northwest Laboratories, Richland, Report AD-A223 546Google Scholar
  6. Coleman, J.O.D.;Blake-Kalff, M.M.A.;Davies, T.G.E. (1997): Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trend in plant science2 (4), 144–151CrossRefGoogle Scholar
  7. Crawford, D.L.; Crawford, R.L. (1996): Bioremediation: Principles and applications, Cambridge University PressGoogle Scholar
  8. Fellows, R.J.;Harvey, S.D., Cataldo, D.A. (1992): An evaluation of the environmental fate and behavior of munitions material (Tetryl and polar metabolites of TNT) in soil and plant systems. Pacific Northwest Laboratories, Richland, WA 99352Google Scholar
  9. Folsom, B.L.; Pennington, J.C.; Teeter, S.L.; Barton, M.R.; Bright, J.A. (1988): Effects of soil pH and treatment level on persistence and plant uptake of 2, 4, 6-trinitrotoluene. Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, Technical Report EL-88-22Google Scholar
  10. Goodfellow, M.;Mordaski, M.;Williams, S.T. (1984): The biology of the actinomycetes. Academic Press, Inc.; New YorkGoogle Scholar
  11. Görge, E.;Brandt, S.;Werner, D. (1994): Uptake and metabolism of 2, 4, 6-trinitrotoluene in higher plants. Environ. Sci. & Pollut. Res.1 (4) 229–233CrossRefGoogle Scholar
  12. Görge, E.;Brandt, S.;Werner, D. (1995): Aufnahme von 2, 4, 6-Trinitrotoluol in Pflanzen. UWSF — Z. Umweltchem. Ökotox.7(3) 139–148CrossRefGoogle Scholar
  13. Haas, R.;Stork, G.(1989): Konzept zur Untersuchung von Rüstungsaltlasten. 1. Untersuchung ehemaliger TNT-Fabriken und Füllstellen. Fresenius Z. Anal. Chem. 335, 839–846CrossRefGoogle Scholar
  14. Harvey, S.D.;Fellows, R.J.;Cataldo, D.A.;Bean, R.M. (1990): Analysis of 2, 4, 6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. J. Chromatogr.518, 361–374CrossRefGoogle Scholar
  15. Langebartels, C.;Harms, H. (1985): Analysis of nonextractable (bound) residues of pentachlorphenol in plant cells using a cell wall fractionation procedure. Ecotoxicology and Environmental Safety10, 268–279CrossRefGoogle Scholar
  16. Marvtn-Sikkema, F.D.;de Bont, J.A.M. (1994): Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol.42, 499–507CrossRefGoogle Scholar
  17. Palazzo, A.J.;D.C. Leggett: The microbial degradation of explosives. Dev. Ind. Microbiol.14, 247–252 (1986)Google Scholar
  18. Pennington, J.C. (1988): Plant uptake of 2, 4, 6-trinitrotoluene, 4-amino, 2, 6-dinitrotoluene, and 2-amino-4, 6-dinitrotoluene using14C-labeled and unlabeled compounds. US Army Engineer Waterways Experiment Station, Vicksburg, MississippiGoogle Scholar
  19. Preuß, J.;Haas, R. (1987): Die Standorte der Pulver-, Sprengstoff-, Kampf- und Nebelstofferzeugung im ehemaligen Deutschen Reich. Geograph. Rundschau39, 578–584Google Scholar
  20. Reinbold, G.W.;Swern, M.A.;Hussong, R.V. (1953): A plating medium for the isolation and enumeration of enterococci. J. Dairy Sci.36, 1–6CrossRefGoogle Scholar
  21. Rickert, D.E.;Butterworth, B.E.;Popp, J.A. (1984): Dinitrotoluol: Acute toxicity, oncogenicity, genotoxicity, and metabolism. CRC Crit. Rev. Toxicol.13, 217–234CrossRefGoogle Scholar
  22. Robinson, L.E.;Crawford, R.L. (1978): Degradation of14C-labeled lignins byBacillus megaterium. FEMS Microbiol. Letters4, 301–302Google Scholar
  23. Scheel, D.;Sandermann, H. (1981): Metabolism of 2, 4-dichlorophenoxyacetic acid in cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.). Planta152, 253–258CrossRefGoogle Scholar
  24. Scheel, D.;Schäfer, W.;Sandermann, H. (1984): Metabolism of pentachlorophenol in cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.). General results and isolation of lignin metabolites. J. Agric. Food Chem.32, 1237CrossRefGoogle Scholar
  25. Scheibner, K.;Hofrichter, M.;Herre, A.;Michels, J.;Fritsche, W. (1997): Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. Appl. Microbiol. Biotechnol.47, 452–457CrossRefGoogle Scholar
  26. Schneider, K.;Oltmanns; J.;Radenberg, T.;.Schneider, T.;Pauly-Mundegar, D. (1996): Uptake of nitroaromatic compounds in plants. Environ. Sci. & Pollut. Res.3 (3), 135–138Google Scholar
  27. Werner, D.;Wilcockson, L.;Zimmermann, E. (1975): Adsorption and selection of rhizobia with ion-exchange papers. Arch. Microbiol. 105, 27–32CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  • Christian Sens
    • 1
  • Petra Scheidemann
    • 1
  • Andreas Klunk
    • 1
  • Dietrich Werner
    • 1
  1. 1.Fachgebiet Zellbiologie und Angewandte BotanikFachbereich Biologie der Philipps Universität MarburgMarburgGermany

Personalised recommendations