Research Articles

Metabolism of phenanthrene in cell suspension cultures of wheat and soybean as well as in intact plants of the water mossFontinalis antipyretica

A comparative study
  • Christiane Schrenk
  • Christian E. W. Steinberg


The metabolism of phenanthrene was studied both in cell suspension cultures of wheat (Triticum aestivum) and soybean (Glycine max), and in intact plants of the water mossFontinalis antipyretica. Metabolism in cell suspension cultures strongly differed between the monocotyle and the dicotyle plant. Only small amounts oftrans-phenanthrene-9,10-dihydrodiole and phenanthrene-9,10-dione were detectable in the wheat culture. Soybean cultures, in contrast demonstrated a strong turnover resulting in a 75% reduction of the initial phenanthrene concentration. Metabolites were phenanthrene-9,10-dione, not further characterized polar metabolites and bound residues. Intact plants ofFontinalis antipyretica metabolized only small amounts of phenanthrene. Data obtained from cell cultures did not provide information for the metabolic potential in intact plants. Therefore standardized tests with model systems like suspension cultures lead to inadequate assessment of the ecological risk of certain xenobiotics.


Cell suspension cultures, model system, phenanthrene metabolism Fontinalis antipyretica, phenanthrene metabolism metabolism of phenanthrene, comparative study, standardized tests - intact plants phenanthrene metabolism, comparative study, standardized tests - intact plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1]
    Nikolaouk, K.;Masclet, P.;Mouvier, G.: Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere - a critical review. Sci. Tot. Environ. 32, 103–132 (1984)CrossRefGoogle Scholar
  2. [2]
    Cerniglia, C.E.: Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. Rev. Biochem. Toxicol. 3, 321–361 (1981)Google Scholar
  3. [3]
    Edwards, N.T.: Uptake, translocation and metabolism of anthracene in bush bean(Phaseolus vulgaris L.). Environ. Toxicol. Chem. 5, 659–665 (1986)CrossRefGoogle Scholar
  4. [4]
    Harms, H.: In-vitro systems for studying phytotoxicity and metabolic fate of pesticides and xenobiotics in plants. Pestic. Sci. 35, 277–281 (1992)CrossRefGoogle Scholar
  5. [5]
    Harms, H.: Uptake and conversion of three different 5-ring polycyclic aromatic hydrocarbons (PAH) in cell suspension cultures of various chenopodiaceae species. Z. Naturforsch. 38c, 382–386 (1983)Google Scholar
  6. [6]
    Harms, H.: Metabolisierung von Benzo[a]pyren in pflanzlichen Zeilsuspensionskulturen und Weizenkeimpflanzen. Landbauforsch. Völkenrode25, 83–90 (1975)Google Scholar
  7. [7]
    Schoeny, R.;Cody, T.;Warshawsky, D.;Radike, M.: Metabolism of mutagenic polycyclic aromatic hydrocarbons by phototsynthetic algal species. Mutat. Res. 197, 289–302 (1988)Google Scholar
  8. [8]
    v.d. Trenck, T.;Sandermann, H.: Metabolism of benzo[a]pyrene in cell suspension cultures of parsley(Petroselinum hortense, Hoffm.) and soybean(Glycine max L.). Planta141, 245–251 (1978)CrossRefGoogle Scholar
  9. [9]
    Sandermann, H.;Scheel, D.;v. d. Trenck, T.: Metabolism of environmental chemicals by plants-copolymerization into lignin. J. Appl. Polymer Sci.: Appl. Polymer Symp. 37, 407–420 (1983)Google Scholar
  10. [10]
    Komossa, D.;Langebartels, C.;Sandermann, H.: Metabolic processes for organic chemicals in plants. In:Trapp, S.;McFarlane, J.C. (Eds.): Plant Contamination: Modeling and Simulation of Organic Chemicals. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo: 69–103 (1995)Google Scholar
  11. [11]
    Ebing, W.;Haque, A.;Schuphan, I.;Harms, H.;Langebartels, C.;Scheel, D.;v.d. Trenck, T.;Sandermann, H.: Ecochemical assessment of environmental chemicals: draft guideline of the test procedure to evaluate metabolism and degradation of chemicals by plant cell cultures. Chemosphere 13, 947–957 (1984)CrossRefGoogle Scholar
  12. [12]
    Hammel, K.E.;Kalyanaraman, B.;Kirk, T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo-p-dioxins byPhaenerochaete chrysosporium lignase. J. Biol. Chem.261, 16948–16952 (1986)Google Scholar
  13. [13]
    Cavalieri, E.;Rogan, E.: One-electron oxidation of aromatic hydrocarbons in chemicals and biological cystems. In:Cooke, M.;Dennis, A.J. (Eds.): Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement. Batelle Press, Columbus 1–26 (1983)Google Scholar
  14. [14]
    Schrenk, C.: Biochemische Wirkungen von Umweltchemikalien auf heterotrophe Zellsuspensionskulturen und aquatische Makrophyten am Beispiel der Polyzyklischen Aromatischen Kohlenwasserstoffe. Dissertation, Techn. Univers. Munich (1996)Google Scholar
  15. [15]
    Sandermann, H.: Metabolism of environmental chemicals: a comparison of plant and liver enzymes systems. In:Klekowski, E.J. (Ed.): Environmental Mutagenesis, Carcinogenesis, and Plant Biology, Praeger, New York, Vol. 1: 1–32 (1982)Google Scholar
  16. [16]
    v.d. Trenck, T.;Sandermann, H.: Incorporation of benzo[a]pyrene quinones into lignin. FEBS Letters125, 72–76 (1981)CrossRefGoogle Scholar
  17. [17]
    Thomas, F.B.;Furlong, N.B.: A rapid radioassay of benzo[a]pyrene activation: observations on the covalent interactions of benzo[a]pyrene with protein. Anal. Biochem.72, 546–551 (1976)CrossRefGoogle Scholar
  18. [18]
    Sims, R.C.;Overcash, M.R.: Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Resid. Rev. 88, 1–68 (1983)Google Scholar
  19. [19]
    Edwards, N.T.;Ross-Todd, R.M.;Garver, E.G.: Uptake and metabolism of 14C-anthracen by soybean(Glycine max). Environ. Exp. Bot. 22, 349–357 (1982)CrossRefGoogle Scholar
  20. [20]
    Barz, W.: Abbau von aromatischen und heterocyclischen Pflanzeninhaltsstoffen durch Zellsuspensionskulturen. Planta medica, Suppl., 117–133 (1975)Google Scholar
  21. [21]
    Roy, S.;Pellinen, J.;Sen, C.K.;Hänninen, O.: Benzo-[a]anthracene and benzo[a]pyrene exposure in the aquatic plantFontinalis antipyretica: uptake, elimination and the response of biotransformation and antioxidant enzymes. Chemosphere 29, 1301–1311 (1994)CrossRefGoogle Scholar
  22. [22]
    Ryan, J.A.;Bell, R.M.;Davidson, J.M.;O’Connor, G.A.: Plant uptake of non-ionic organic chemicals from soils. Chemosphere17, 2299–2323 (1988)CrossRefGoogle Scholar
  23. [23]
    Wild, S.R.;Jones, K.C.: Studies on the polynuclear aromatic hydrocarbon content of carrots(Daucus carota). Chemosphere23, 243–251 (1991)CrossRefGoogle Scholar
  24. [24]
    O’Connor, G.A.;Chaney, R.L.;Ryan, J.A.: Bioavailability to plants of sludge-borne toxic organics. Rev. Environ. Contam. Toxicol.121, 129–155 (1991)Google Scholar
  25. [25]
    Khan, S.U.: Bound pesticide residues in soil and plants. Resid. Rev.84, 1–25 (1982)Google Scholar
  26. [26]
    Pawlizki, K.-H.;Pogány, E.;Wallnöfer, P.R.: Gebundene Rückstände in Pflanzen Auswirkungen auf Verbraucher, Folgekulturen und Naturhaushalt. Gesunde Pflanzen43, 375–379 (1991)Google Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  • Christiane Schrenk
    • 1
  • Christian E. W. Steinberg
    • 1
  1. 1.Institute for Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations