Progress in herbicide determination with the thylakoid bioassay

  • Stefanie Trapmann
  • Nestor Etxebarria
  • Heide Schnabl
  • Karl Heinz Grobecker
Research Articles


Chloroplast thylakoids are used as biological units to determine herbicides in different kinds of water samples as well as in aqueous extracts of compost, soil or food samples. The thylakoid bioassy shows clearly inhibition of fluorescence yield in the presence of photosystem II specific herbicides. Due to this method the ecotoxicological effect of samples with unknown pollutants can be tested fast and cost effective. It has been proven that all photosynthetic active compounds are recorded at the same time because only additive interactions occur. Therefore, the contamination level can be expressed as cumulative parameter for photosystem II active substances. Application was improved clearly by the addition of the radical scavenger sodium ascorbate to the isolation media and by a higher concentration of the measuring medium. A new data evaluation method is described yielding in a lower detection limit of 0.4 μg diuron/1. The guidelines for the quality of water for human consumption with an allowable concentration of pesticides in groups is 0,5 μg/1 [1,2] and can be controlled with the thylakoid bioassay without performing any preconcentration steps.


Bioassay drinking water, pollution, pesticides herbicides, water samples herbicides interactions thylakoids, bioassay thylakoids 


  1. [1]
    1. Trinkwasserverordnung (1986): Verordnung über Trinkwassser und über Wasser für Lebensmittelbetriebe vom 22.5.1986. BGBl.Ip. 760Google Scholar
  2. [2]
    European Economy Community (1985): Drinking water directive, no. 80/778/EECGoogle Scholar
  3. [3]
    J. Bausch-Weis;S. Overmeyer;H. Schnabl (1994): Chloroplastenthylakoide als Herbiziddetektoren im Trinkwasser. Vom Wasser, 83, 235–241Google Scholar
  4. [4]
    G.M. Zimmermann;G.N. Kramer;H. Schnabl (1996): Lyophilisation of Thylakoids for improved handling in a bioassay. Environ. Toxicol. Chem., 15, 1461–1463CrossRefGoogle Scholar
  5. [5]
    A. Larson (1988): The antioxidants of higher plants. Phytochemistry, 27, 969–978CrossRefGoogle Scholar
  6. [6]
    W.S. Cohen;D.R. Baxter (1990): Sulfhydryl reagents and energy-linked reactions in monocot thylakoids. Plant Physiol., 93, 1005–1010Google Scholar
  7. [7]
    H.H. Robinson;C.F. Yocum (1980): Cyclic photophosphorylation reactions catalyzed by ferredoxin, methyl viologen and anthraquinone sulfonate. Biochim. Biophys. Acta, 590, 97–106CrossRefGoogle Scholar
  8. [8]
    D.I. Arnon (1949): Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1–15CrossRefGoogle Scholar
  9. [9]
    U. Schreiber;W. Bilger (1993): Progress in chlorophyll fluorescence research — Major developments during the past years in retrospect. In: Progress in Botany,H. D. Behnke et al. (Eds.), Vol. 54. Springer Berlin, Heidelberg, Germany, pp. 151–173Google Scholar
  10. [9]
    U. Takahama (1982): Suppression of carotenoid photobleaching by kaempferol in isolated chloroplasts. Plant Cell Physiol., 23, 859–864Google Scholar
  11. [10]
    G.P. Evans;M.G. Briers;D.M. Rawson (1986): Can biosensors help to protect drinking water? Biosensors, 2, 287–300CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 1998

Authors and Affiliations

  • Stefanie Trapmann
    • 1
    • 2
  • Nestor Etxebarria
    • 2
  • Heide Schnabl
    • 1
  • Karl Heinz Grobecker
    • 2
  1. 1.Institute for Agricultural BotanyUniversity BonnBonnGermany
  2. 2.Institute for Reference Materials and MeasurementsJoint Research Centre, European CommissionGeelBelgium

Personalised recommendations