The Mathematical Intelligencer

, Volume 27, Issue 2, pp 26–34 | Cite as

Integers and polynomials: comparing the close cousins Z and F q [x]



Prime Number Finite Field Irreducible Polynomial Monic Polynomial Riemann Hypothesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. M. Adleman and M.-D.A. Huang, Primality Testing and Abelian Varieties over Finite Fields, Lect. Notes in Math., Vol. 1512, Springer-Verlag, 1992.Google Scholar
  2. [2]
    M. Agrawal, N. Kayal, and N. Saxena,PRIMES is in P, Annals of Mathematics160 (2004),s 781–798.MATHMathSciNetGoogle Scholar
  3. [3]
    Z. I. Borevich and I. R. Shafarevich,Number Theory, New York, Academic Press, 1966.Google Scholar
  4. [4]
    V. Brun,La serie 1/5 + 1/7 + 1/11 +. . .oú les dénominateurs sont “nombres premiers jumeaux“ est convergente ou finie, Bull. Sci. Math.43 (1919), 100–104 and 124–128.MATHGoogle Scholar
  5. [5]
    J. R. Chen,On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II, Acta Math. Sci. Sinica16 (1973), 157–176; and 21 (1978), 421–430.MATHGoogle Scholar
  6. [6]
    J. R. Chen and Y. Wang,On the Odd Goldbach Problem, Acta Math. Sci. Sinica32 (1989), 702–718.MATHGoogle Scholar
  7. [7]
    R. Crandall and C. Pomerance,Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2001.CrossRefGoogle Scholar
  8. [8]
    J.-M. Deshouillers, G. Effinger, H. nte Riele, and D. Zinoviev,A Complete Vinogradov 3-Primes Theorem under the Riemann Hypothesis, Electronic Research Announcements of the AMS,3 (1997), 99–104.MATHGoogle Scholar
  9. [9]
    G. Effinger,A Goldbach Theorem for Polynomials of Low Degree over Odd Finite Fields, Acta Arithmetica,42 (1983), 329–365.MATHMathSciNetGoogle Scholar
  10. [10]
    G. Effinger,A Goldbach 3-Primes Theorem for Polynomials of Low Degree over Finite Fields of Characteristic 2, Journal of Number Theory, 29 (1988), 345–363.MATHMathSciNetGoogle Scholar
  11. [11]
    G. Effinger,The Polynomial 3-Primes Conjecture, inComputer Assisted Analysis and Modeling on the IBM 3090, Baldwin Press, Athens, Georgia 1992.Google Scholar
  12. [12]
    G. Effinger and D.R. Hayes, Additive Number Theory of Polynomials over Finite Fields,Oxford University Press, 1991.Google Scholar
  13. [13]
    G. Effinger, K. Hicks, and G.L. Mullen,Twin Irreducible Polynomials over Finite Fields, in: Finite Fields with Applications in Coding Theory, Cryptography, and Related Areas, Springer, Heidelberg, 2002, 94–111.Google Scholar
  14. [14]
    J.A. Gallian,Contemporary Abstract Algebra, Houghton-Mifflin, 2002.Google Scholar
  15. [15]
    S. Gao,On the Deterministic Complexity of Polynomial Factoring, J. Symbolic Computation,31 (2001), 19–36.MATHGoogle Scholar
  16. [16]
    J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Univ. Press, 1999.Google Scholar
  17. [17]
    H. Halberstan and H.E. Richert,Sieve Methods, Academic Press, New York, 1974.Google Scholar
  18. [18]
    G.H. Hardy and J.E. Littlewood,Some Problems of ‘Partitio Numerorum’; III: On the Expression of a Number as a Sum of Primes, Acta Mathematics44 (1922), 1–70.MathSciNetGoogle Scholar
  19. [19]
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Clarendon Press, Oxford, 1959.Google Scholar
  20. [20]
    D.R. Hayes,A Goldbach Theorem for Polynomials with Integer Coefficients, Amer. Math. Monthly,72 (1965), 45–46.MATHMathSciNetGoogle Scholar
  21. [21]
    D.R. Hayes,The Expression of a Polynomial As a Sum of Three Inducibles, Acta Arithmetica,11 (1966), 461–488.MATHMathSciNetGoogle Scholar
  22. [22]
    A.K. Lenstra and H.W. Lenstra, Jr, editors,The Development of the Number Field Sieve, Lect. Notes in Math.,1554, Springer-Verlag, 1993.Google Scholar
  23. [23]
    R. Lidl and H. Niederreiter,Finite Fields, Cambridge Univ. Press, 1997.Google Scholar
  24. [24]
    H. Niederreiter,A New Efficient Factorization Algorithm for Polynomials over Small Finite Fields, Appl. Alg. in Eng., Comm., and Comp. 4(1993), 81–87.MATHMathSciNetGoogle Scholar
  25. [25]
    T.R. Nicely,Enumeration to 1014 of the Twin Primes and Brun’s Constant, Virginia Journal of Science46 (1995) 195–204. Enumeration to 1.6 x 1016 is available from web site MathSciNetGoogle Scholar
  26. [26]
    A.M. Odlyzko, M. Rubinstein, and M. Wolf,Jumping Champions, Exp. Math. 8(1999) 107–118.MATHMathSciNetGoogle Scholar
  27. [27]
    I. Peterson,Cranking Out Primes, Science News, Oct. 1, 1994, 217.Google Scholar
  28. [28]
    G. Polya,Heuristic Reasoning in the Theory of Numbers, Am. Math. Monthly,66 (1959), 375–384.MATHMathSciNetGoogle Scholar
  29. [29]
    P. Ribenboim,The New Book of Prime Numbers, Springer-Verlag, 1995.Google Scholar
  30. [30]
    K. Scheicher and J.M. Thuswaldner,Digit Systems in Polynomial Rings over Finite Fields, Finite Fields Appl. 9 (2003), 322–333.MATHMathSciNetGoogle Scholar
  31. [31]
    A. Selberg,Reflections around Ramanujan Centenary, Paper 41 inCollected Papers/Atle Selberg, Vol. 1, Springer-Verlag, Berlin, 1989.Google Scholar
  32. [32]
    P.W. Shor,Polynomial-time Algorithms for Primie Factorization and Discrete Logarithms on a Quantum Computer, SIAM J. Comp. 26 (1997), 1484–1509.MATHMathSciNetGoogle Scholar
  33. [33]
    J. Teitelbaum, Review ofPrime Numbers: A Computational Perspective, Bull. Amer. Math. Soc,39 (2002), 449–454.Google Scholar
  34. [34]
    R.C. Vaughan,The Hardy-LittlewoodMethod (2nd ed.), Cambridge University Press, 1997.Google Scholar
  35. [35]
    I.M. Vinogradov,Representation of an odd number as a sum of three primes, Comptes Rendus (Doklady) de I’Academia des Sciences de I’USSR15 (1937), 291–294.Google Scholar
  36. [36]
    A. Weil,Sur les courbes algébriques et les variétés qui s’en déduisent, Hermann, 1948.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsSkidmore CollegeSaratoga SpringsUSA
  2. 2.Department of Physics and AstronomyOhio UniversityAthensUSA
  3. 3.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations