Advertisement

Coprolites from the Maastrichtian Whitemud Formation of southern Saskatchewan: Morphological classification and interpretation on diagenesis

  • Michael Schmitz
  • Pier L. Binda
Article

Abstract

Alluvial floodplain mudstones of the late Maastrichtian Whitemud Formation of southern Saskatchewan contain abundant vertebrate faecal remains preserved as siderite and Fe-hydroxides. The coprolites are grouped into nine morphological classes on the basis of style of coiling, shape, size, and striations. Their morphology is consistent with deposition of the faeces by terrestrial reptiles and not by fish as previously reported. The excellent preservation of the fossils can be attributed to early diagenetic precipitation of Fe CO3 in loci where faecal matter was still bacterially fermenting.

Keywords

Cretaceous Pier Goethite Siderite Maastrichtian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kurzfassung

Tonsteine der oberkretazischen Whitemud-Formation (Süd-Saskatchewan, Kanada) enthalten neben Pflanzenresten eine Vielzahl unterschiedlich geformter Koprolithen. Eisenkarbonate und Eisenhydroxide bestimmen deren chemische Zusammensetzung. Aufgrund der äußeren Form, der Größe und feinmorphologischer Kriterien wurden die fossilen Kotballen in neun morphologische Grup-pen eingeordnet. Alternativ zu früheren Annahmen, die als Erzeuger dieser Koprolithen Fische ansahen, werden Reptilen als deren Produzenten diskutiert. Die ausgezeichnete Erhaltung der Koprolithen ist das Resultat einer frühdiagenetischen Mineralisation, ausgelöst durch bakterielle Metabolite während des mikrobiellen Abbaus organischer Substanz.

References

  1. Amstutz, G. C. 1958. Coprolites: A review of the literature and a study of specimens from southern Washington. - Journal of Sedimentary Petrology28: 498–508, Tulsa.Google Scholar
  2. Berner, R. A. 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. -Fortschritte der Mineralogie59(1): 117–135, Stuttgart.Google Scholar
  3. BiNDA, P. L. 1968. A new species ofSpermatites from the Upper Cretaceous of southern Alberta. - Revue de Micropaleontologie11: 137–142, Paris.Google Scholar
  4. - 1970. Sedimentology and micropaleontology of the rocks associated with the Cretaceous Kneehills Tuff of Alberta. - Thesis, University Alberta, Edmonton: 273 pp. [Unpubl.]Google Scholar
  5. Binda, P. L. &Lerbekmo, J. F. 1973. Grain-size distribution and depositional environment of Whitemud sandstones, Edmonton Formation (Upper Cretaceous), Alberta, Canada. - Bulletin of Canadian Petroleum Geology21: 52–80, Calgary.Google Scholar
  6. Binda, P. L. &Nambudiri, E. M. V. 1983. Fossil seed cuticles from the Upper Cretaceous Whitemud bed of Alberta and Saskatchewan, Canada. - Canadian Journal of Botany61: 2717–2728, Ottawa.CrossRefGoogle Scholar
  7. —— &Nambudiri, E. M. V. 1988. Two new species ofErlansonisporites from the Whitemud Formation (Maastrichtian), Alberta, Canada. - Pollen et Spores30 (2): 231–242, Paris.Google Scholar
  8. Binda, P. L. 1991. The Battle Formation: a lacustrine episode in the late Maastrichtian of western Canada. - [In:] Mateer, N. J. & Chen, P. L. (eds): Aspects of non-marine Cretaceous Geology. - China Ocean Press: 202–217, Beijing.Google Scholar
  9. Broughan, F. M. 1984. Paleoenvironment of the Eastend, Whitemud (Maastrichtian), and Ravenscrag (Paleocene) Formations, eastern Cypress Hills, Saskatchewan. - Thesis, University Saskatoon: 178 pp. [Unpubl.]Google Scholar
  10. Broughton, P. L. 1981. Casts of vertebrate internal organs from the Upper Cretaceous of western Canada. - Journal of Geology89: 741–749, Chicago.CrossRefGoogle Scholar
  11. Broughton, P. L;Simpson, F. &Whitaker, S. H. 1978. Late Cretaceous coprolites from western Canada. - Palaeontology21 (2): 443–453, Dundee.Google Scholar
  12. Buckland, W. 1829. On the discovery of coprolites, or fossil faeces in the Lias of Lyme Regis, and other formations. - Transactions of the Geological Society of London, Second Series 3:223–236, London.Google Scholar
  13. Caldwell, W. G. E. 1982. The Cretaceous System in the Williston Basin - a modern appraisal. - [In:] Christopher, J. E. & Kaldi, J. (eds) Fourth International Williston Basin Symposium, Regina, Saskatchewan. - Geological Society of America, Special Publication 6: 295–321, Boulder.Google Scholar
  14. Commission on Stratigraphic Nomenclature 1983. North American Stratigraphie Code. - American Association of Petroleum Geologists Bulletin67: 841–875, Tulsa.Google Scholar
  15. Etheridge, R. 1904. On the occurrence of the genusPtychocems (?) and other additional fossils in the Cretaceous of the northern Territory of south Australia. - Australian Museum Record 5, pt. 2: 8, Sydney.Google Scholar
  16. Folinsbee, R. E.; Baadsgaard, H.; Cumming, G. L.; Nascimbene, J. & Shafiqullah, M. 1966. Late Cretaceous radiometric dates from the Cypress Hills of western Canada. - Alberta Society of Petrology and Geology. 15th Annals Field Conference Guidebook, Part 1, Cypress Hills Plateau: 162–174, Calgary.Google Scholar
  17. Fritz, P.;Binda, P. L.;Folinsbee, R. E. &Krouse, H. R. 1971. Isotopic composition of diagenetic sid- erites from Cretaceous sediments in western Canada. - Journal of Sedimentary Petrology41: 282–288, Tulsa.Google Scholar
  18. Hàntzschel, W.; El-Baz, F. & Amstutz, G. C. 1968. Coprolites an annotated Bibliography. - Bulletin of the Geological Society of America 108: 121 pp., Boulder.Google Scholar
  19. Heizer, R. F. &Napton, L. K. 1969. Biological and cultural evidence from prehistoric human coprolites. -Science165: 563–568, Washington.CrossRefGoogle Scholar
  20. Jain, S. L. 1983. Spirally coiled “coprolites” from the Upper Triassic Maleri Formation, India. -Palaeontology26 (4): 813–829, London.Google Scholar
  21. Johnson, J. H. 1934. A coprolite horizon in the Pennsylvanian of Chaffee and Parc Counties, Colorado. - Journal of Paleontology8: 477–479, Tulsa.Google Scholar
  22. Kelso, G. K. &Solomon, A. M. 1976. Pollen analysis of human coprolites; implications of experimental evidence from modern fecal samples. - Annals of the Quatarian Association, National Conference, Abstracts4: 142, Tucson.Google Scholar
  23. Kupsch, W. O. 1956. Geology of western Cypress Hills.- Report of the Saskatchewan Department of Mineralogy and Resources20: 30 pp., Regina.Google Scholar
  24. Lang, A. 1985. Spuren und Fährten unserer Tiere. - 127 pp., BLV Verlagsgesellschaft, München.Google Scholar
  25. Langston, W. Jr. 1965. Pre-Cenozoic vertebrate paleontology in Alberta: its past and future. - Vertebrate Paleontology in Alberta, University of Alberta:9–31, Edmonton.Google Scholar
  26. Lensch, G. 1967. Geochemie und Sulfidvererzung der Tonsteine - Septarien aus den Lebacher Schichten des saarländischen Unterrotliegenden. - Universität Saraviensis Annales, Berlin-Nikolassee 5: 131–172, Berlin.Google Scholar
  27. Lerbekmo, J. F. 1985. Magnetostratigraphic and biostratigraphic correlations of Maastrichtian to early Paleocene strata between south-central Alberta to southwest Saskatchewan. - Bulletin of Canadian Petroleum Geology33: 213–226, Calgary.Google Scholar
  28. McAllister, J. A. 1985. Réévaluation of the formation of spiral coprolites. - University of Kansas, Pa-leontological Contributions114: 1–12, Lawrence.Google Scholar
  29. Nambudiri, E. M. V. &Binda, P. L. 1989. Dicotyledonous fruits associated with coprolites from the Upper Cretaceous (Maastrichtian) Whitemud Formation, Southern Saskatchewan, Canada. - Review of Palaeobotany and Palynology 59: 57–66, Amsterdam.CrossRefGoogle Scholar
  30. Neumayer, L. 1904. Die Koprolithen des Perm von Texas. - Palaeontographica51: 121–128, Cassel.Google Scholar
  31. Pinna, G. 1985. Exceptional preservation in the Jurassic of Osteno. - Philosophical Transactions of the Royal Society London311: 171–180, London.CrossRefGoogle Scholar
  32. Postma, D. 1981. Formation of siderite and vivianite and the pore-water composition of a Recent bog se- diment in Denmark. -Chemical Geology31: 225–244, Amsterdam.CrossRefGoogle Scholar
  33. — 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. - American Jour- nal of Science282: 1151–1183, New Haven.Google Scholar
  34. Postma, D. &Brockenhuus-Schack, B. S. 1987. Diagenesis of iron in postglacial sand deposits of late- and post- Weichsehan age. - Journal of Sedimentary Petrology57 (6): 1040–1053, Tulsa.Google Scholar
  35. Russell, L. S. 1983. Evidence for an unconformity at the Scollard-Battle contact, Upper Cretaceous strata, Alberta. -Canadian Journal of Earth Science20: 1219–1231, Ottawa.Google Scholar
  36. Sawyer, G. T. 1981. A study of a crocodilian coprolite from Wannagan Creek Quarry (Paleocene North Dakota). Ichnofossils II. -Scientific Publications of the Science Museum of Minnesota 5 (2): 4–29, St. Paul.Google Scholar
  37. Schmitz, M. 1989. Die Koprolithen mitteleozäner Vertebraten aus der Grube Messel bei Darmstadt. - Thesis, University of Frankfurt, West-Germany, 199 pp.Google Scholar
  38. Schmitz-Münker, M. &Franzen, J. L. 1988. Die Rolle von Bakterien im Verdauungstrakt mitteleozäner Vertebraten aus der Grube Messel bei Darmstadt und ihr Beitrag zur Fossil-Diagenese. - Courier Forschungs-Institut Senckenberg107: 129–146, Frankfurt.Google Scholar
  39. Shapiro, J. A. 1988. Bakterien als Vielzeller. - Spektrum der Wissenschaft8: 52–59, Heidelberg.Google Scholar
  40. Srivastava, S. K. 1970. Pollen biostratigraphy and paleoecology of the Edmonton Formation (Maastrichtian), Alberta, Canada. -Palaeogeography, Palaeoclimatology and Palaeoecology7: 221–276, Amsterdam.CrossRefGoogle Scholar
  41. — 1978. The Cretaceous megaspore genusGhoshispora. - Palaeontographica (B)167: 175–184, Stuttgart.Google Scholar
  42. Srivastava, S. K. &Binda, P. L. 1969. Megaspores of the genusBalmeisporites from the Upper Cretaceous of Alberta and Saskatchewan, Canada. - Revue de Micropaleontologie11: 205–209, Paris.Google Scholar
  43. Steward, D. J. 1978. Enterospirae (Fossil Intestines) from the Upper Cretaceous Niobrara Formation of Western Kansas. -University of Kansas, Palaeontological Contributions89: 16, Lawrence.Google Scholar
  44. Storer, J. 1989. Geological History of Saskatchewan. - Saskatchewan Museum of Natural History: 91 pp., Regina.Google Scholar
  45. Teichmüller, M. 1988. Zur chemischen und mikroskopischen Zusammensetzung vermutlicher Kroko- dils-Koprolithe aus dem eozänen ölschiefer von Messel. - Courier Forschungs-Institut Senckenberg107: 147–161, Frankfurt.Google Scholar
  46. Vogeltanz, R. 1965. Austrocknungsstrukturen bei Koprolithen. - Neues Jahrbuch für Geologie und Paläontologie Monatshefte: 362-371, Stuttgart.Google Scholar
  47. Waldmann, M. 1970. Comments on a Cretaceous coprolite from Alberta, Canada. - Canadian Journal of Earth Science7 (3): 1008–1012, Ottawa.Google Scholar
  48. Williams, M. E. 1972. The origin of “spiral coprolites”. - University of Kansas, Paleontological Contributions 59: 1–19, Lawrence.Google Scholar
  49. Wuttke, M. 1988. Erhaltung - Lösung - Umbau - Zum Verhalten biogener Stoffe bei der Fossilisation. - [In:] Schaal, S. & Ziegler, W. (eds) Messel - Ein Schaufenster in die Geschichte der Erde und des Lebens: -Senckenberg-Buch64: 265–275, Waldemar Kramer, Frankfurt.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 1991

Authors and Affiliations

  • Michael Schmitz
    • 1
  • Pier L. Binda
    • 2
  1. 1.Geologisch-Paläontologische & Mineralogische Abteilung des Hessischen Landesmuseums DarmstadtDarmstadtWest Germany
  2. 2.Geology DepartmentUniversity of ReginaReginaCanada

Personalised recommendations