Advertisement

The Mathematical Intelligencer

, Volume 26, Issue 2, pp 58–62 | Cite as

The Mathematicians’ Happy Hunting Ground: Einstein’s General Theory of Relativity

  • David E. Rowe
Article

Abstract

There is hardly any doubt that for physics special relativity theory is of much greater consequence than the general theory. The reverse situation prevails with respect to mathematics: there special relativity theory had comparatively little, general relativity theory very considerable, influence, above all upon the development of a general scheme for differential geometry. —Hermann Weyl, “Relativity as a Stimulus to Mathematical Research,” pp. 536–537.

Keywords

Mathematical Intelligencer Lone Wolf Differential Geometer Magic Circle Pure Imagination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Birkhoff 1923] George D. Birkhoff,Relativity and Modern Physics, Cambridge, Mass.: Harvard University Press, 1923.MATHGoogle Scholar
  2. [Cartan 1974] Élie Cartan,Notice sur les travaux scientifiques, Paris: Gauthier-Villars, 1974.MATHGoogle Scholar
  3. [Droste 1916] Johannes Droste, “The Field of a Single Centre in Einstein’s Theory of Gravitation and the Motion of a Particle in that Field,”Proceedings of the Section of Sciences, Koninklijke Akademie van Weten-schappen te Amsertdam, 19(1916): 197–215.Google Scholar
  4. [Eddington 1920] Arthur Stanley Eddington,Space, Time and Gravitation, Cambridge: Cambridge University Press, 1920.Google Scholar
  5. [CPAE, vol. 5]Collected Papers of Albert Einstein (CPAE), Vol. 5;The Swiss Years: Correspondence, 1902–1914, Martin J. Klein et al., eds., Princeton, NJ: Princeton University Press, 1993.Google Scholar
  6. [CPAE, vol. 7]Collected Papers of Albert Einstein/(CPAE), Vol. 7:The Berlin Years: Writings, 1918–1921, Michel Janssenet al., eds. Princeton, NJ: Princeton University Press, 2002.Google Scholar
  7. Collected Papers of Albert Einstein (CPAE), Vol. 8A:The Berlin Years: Correspondence, 1914–1917, Robert Schulmann et al., eds. Princeton, NJ: Princeton University Press, 1998.Google Scholar
  8. [CPAE, vol. 8B]Collected Papers of Albert Einstein (CPAE, Vol. 8B:The Berlin Years: Correspondence, 1918, Robert Schulmann et al., eds. Princeton, NJ: Princeton University Press, 1998.Google Scholar
  9. [Einstein 1916] Albert Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,”Annalen der Physik 49 (1916), 769–822.Google Scholar
  10. [Einstein 1922] Albert Einstein,The Moaning of Relativity. Four Lectures Delivered at Princeton University, May 1921, London: Methuen, 1922.Google Scholar
  11. [Eisenhart 1927] Luther P. Eisenhart,Non-Riemannian Geometry, Princeton, NJ: Princeton University Press, 1927.Google Scholar
  12. [Eisenstaedt 1989] Jean Eisenstaedt, “The Early Interpretation of the Schwarzschild Solution, ” inEinstein and the History of General Relativity, Einstein Studies, vol. 1, ed. D. Howard and J. Stachel, Basel: Birkhäuser, 1989, pp. 213–233.Google Scholar
  13. [Gehrcke 1916] Ernst Gehrcke, “Zur Kritik und Geschichte der neueren Gravitationstheorien.”Annalen der Physik 51 (1916): 119–124.Google Scholar
  14. [Hawking and Ellis 1973] S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Space-Time, Cambridge: Cambridge University Press, 1973.CrossRefMATHGoogle Scholar
  15. [Hilbert 1916–1917] David Hilbert, “Die Grundlagen der Physik II,” Vorlesung, Wintersemester 1916-17, ausgearbeitet von R. Bär, Mathematisches Institut, Universität Göttingen.Google Scholar
  16. [Laue 1917] Max von Laue, “Die Fortpflanzungsgeschwindigkeit der Gravitation. Bemerkungen zur gleichnahmigen Abhandlung von P. Gerber,Annalen der Physik, 52 (1917), 214–216.Google Scholar
  17. [Laue 1921] Max von Laue,Die Relativitätstheorie, Band 2.Die allgemeine Relativitätstheorie und Einsteins Lehre von der Schwerkraft. Braunschweig: Vieweg, 1921.Google Scholar
  18. [Pais 1982] Abraham Pais,‘Subtle is the Lord.’: The Science and the Life of Albert Einstein, Oxford: Clarendon Press, 1982.Google Scholar
  19. [Reid 1976] Constance Reid,Courant in Göttingen and New York, New York: Springer-Verlag, 1976.MATHGoogle Scholar
  20. [Reuterdahl 1924] Arvid Reuterdahl, “The Einstein Film and the Debacle of Relativity.”The Dearborn Independent, 22 March, 1924, p. 15.Google Scholar
  21. [Rowe 2001] David E. Rowe, “Einstein Meets Hilbert: At the Crossroads of Physics and Mathematics,”Physics in Perspective, 3 (2001): 379–424.CrossRefMATHMathSciNetGoogle Scholar
  22. [Sayen 1985] Jamie Sayen,Einstein in America. The Scientist’s Conscience in the Age of Hitler and Hiroshima, New York: Crown Publishers, 1985.Google Scholar
  23. [Scholz 2001] Erhard Scholz, “Weyls Infinitesimalgeometrie, 1917-1925,”Hermann Weyl’s Raum-Zeit-Materieand aGeneral Introduction to his Scientific Work, Basel: Birkhäuser, 2001, pp. 48–104.Google Scholar
  24. [Schwarzschild 1916] Karl Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie,”Königlich Preuβische Akademie der Wissenschaften (Berlin).Sitzungsberichte (1916): 189-196.Google Scholar
  25. [Veblen 1927] Oswald Veblen, “Invariants of Quadratic Differential Forms,” Cambridge: Cambridge University Press, 1927.Google Scholar
  26. [Wald 1984] Robert M. Wald,General Relativity, Chicago: University of Chicago Press, 1984.Google Scholar
  27. [Weyl 1918] Hermann Weyl,Raum-Zeit-Materie. Vorlesungen über allgemeine Relativitätstheorie, Berlin: Springer-Verlag, 1918.Google Scholar
  28. [Weyl 1949] Hermann Weyl, “Relativity Theory as a Stimulus in Mathematical Research,”Proceedings of the American Philosophical Society 93 (1949), 535–541.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • David E. Rowe
    • 1
  1. 1.Fachbereich 17-MathematikJohannes Gutenberg UniversityMainzGermany

Personalised recommendations