Annals of Nuclear Medicine

, 20:13 | Cite as

Value of radionuclide studies in cardiac transplantation

  • Albert Flotats
  • Ignasi Carrió


Effective noninvasive evaluation of acute and chronic allograft rejection remains an important challenge in patients with cardiac transplantation. Radionuclide studies have demonstrated utility because of their ease of use, giving relevant information about the pathophysiology of the transplanted heart, along with valuable diagnostic and prognostic indicators. This article focuses on reviewing the pathophysiological changes of the transplanted heart and implications for radionuclide studies.

Key words

cardiac transplantation radionuclide imaging of necrosis and apoptosis myocardial perfusion scintigraphy positron emission tomography radionuclide imaging of sympathetic innervation 


  1. 1.
    Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick RJ. The registry of the international society for heart and lung transplantation: eighteenth official report—2001.J Heart Lung Transplant 2001; 20: 805–815.PubMedCrossRefGoogle Scholar
  2. 2.
    Dengler TJ, Pober JS. Cellular and molecular biology of cardiac transplant rejection.J Nucl Cardiol 2000; 7: 669- 685.PubMedCrossRefGoogle Scholar
  3. 3.
    Fowles R, Mason J. Role of cardiac biopsy in the diagnosis and management of cardiac disease.Prog Cardiovasc Dis 1984; 27: 153–172.PubMedCrossRefGoogle Scholar
  4. 4.
    Billingham ME. The pathology of transplanted hearts.Semin Thorac Cardiovasc Surg 1990; 2: 233–240.PubMedGoogle Scholar
  5. 5.
    Burgess M, Bhattacharyya A, Ray SG. Echocardiography after cardiac transplantation.J Am Soc Echocardiogr 2002; 15:917–925.PubMedCrossRefGoogle Scholar
  6. 6.
    Iturralde M, Novitzky D, Cooper DK, Rose AG, Boniaszczuk J, Smith JA, et al. The role of nuclear cardiology procedures in the evaluation of cardiac function following heart transplantation.Semin Nucl Med 1988; 18: 221–240.PubMedCrossRefGoogle Scholar
  7. 7.
    Buchthal S, Noureuil T, Hollander JA, Bourge RC, Kirklin JK, Katholi CR, et al.31P-magnetic resonance spectroscopy studies of cardiac transplant patients at rest.J Cardiovasc Magn Reson 2000; 2: 51–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Khaw BA, Gold HK, Leinbach RC, et al. Early imaging of experimental myocardial infarction by intracoronary administration of131I-labelled anticardiac myosin (Fab′)2 fragments.Circulation 1978; 58: 1137–1142.PubMedGoogle Scholar
  9. 9.
    Khaw BA, Fallon JT, Beller GA, Haber E. Specificity of localization of myosin-specific antibody fragments in experimental myocardial infarction: histologic, histochemical, autoradiographic and scintigraphic studies.Circulation 1979; 60: 1527–1531.PubMedGoogle Scholar
  10. 10.
    Khaw BA, Scott J, Fallon JT, et al. Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres.Science 1982; 217: 1050–1053.PubMedCrossRefGoogle Scholar
  11. 11.
    Khaw BA, Mattis JA, Melincoff G, et al. Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction.Hybridoma 1984; 3: 11–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Narula J, Southern JF, Dec GW, et al. Antimyosin uptake and myofibrillarlysis in dilated cardiomyopathy.J Nucl Cardiol 1995; 2: 470–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Carrió I, Berna L, Ballester M, Estorch M, Obrador D, Cladellas M, et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection.J Nucl Med 1988; 29: 1893–1900.PubMedGoogle Scholar
  14. 14.
    Carrió I, López-Pousa A, Estorch M, et al. Detection of doxorubicin cardiotoxicity in patients with sarcomas by indium-111 -antimyosin monoclonal antibody studies.J Nucl Med 1993; 34: 1503–1507.PubMedGoogle Scholar
  15. 15.
    Nishimura T, Nagata S, Uehara T, et al. Assessment of myocardial damage in dilated-phase hypertrophic cardiomyopathy by using indium-111-antimyosin Fab myocardial scintigraphy.J Nucl Med 1991; 32: 1333–1337.PubMedGoogle Scholar
  16. 16.
    Ballester M, Obrador D, Carrió I, et al. Early postoperative reduction of monoclonal antimyosin antibody uptake is associated with absent rejection-related complications after heart transplantation.Circulation 1992; 85: 61–68.PubMedGoogle Scholar
  17. 17.
    Ballester M, Obrador D, Carrió I, et al.111In-monoclonal antimyosin antibody studies after the first year of heart transplantation: identification of risk groups for developing rejection during long-term follow-up and clinical implications.Circulation 1990; 82: 2100–2108.PubMedGoogle Scholar
  18. 18.
    Aranda JM, Hill J. Cardiac transplant vasculopathy.Chest 2000; 118: 1792–1800.PubMedCrossRefGoogle Scholar
  19. 19.
    Ballester M, Obrador D, Carrió I, Bordes R, Auge JM, Crexells C, et al. Reversal of rejection-induced coronary vasculitis detected early after heart transplantation with increased immunosuppression.Heart Transplant 1999; 8: 413–417.Google Scholar
  20. 20.
    Lamich R, Ballester M, Marti V, Brossa V, Aymat R, Carrió I, et al. Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation.J Am Coll Cardiol 1998; 32: 413–419.PubMedCrossRefGoogle Scholar
  21. 21.
    Pflugfelder PW, Boughner DR, Rudas L, Kostuk WJ. Enhanced detection of cardiac allograft arterial disease with intracoronary ultrasonographic imaging.Am Heart J 1993; 125: 1583–1590.PubMedCrossRefGoogle Scholar
  22. 22.
    Knollmann FD, Bocksch W, Spiegelsberger S, Hetzer R, Felix R, Hummel M. Electron-beam computed tomography in the assessment of coronary artery disease after heart transplantation.Circulation 2000; 101: 2078–2082.PubMedGoogle Scholar
  23. 23.
    Spes CH, Klauss V, Mudra H, Schnaack SD, Tammen AR, Rieger J, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound.Circulation 1999; 100: 509–515.PubMedGoogle Scholar
  24. 24.
    Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging.J Am Coll Cardiol 2003; 42: 1054–1060.PubMedCrossRefGoogle Scholar
  25. 25.
    Smart FW, Ballantyne CM, Cocanougher B, et al. Insensi-tivity of noninvasive tests to detect coronary artery vasculopathy after heart transplantation.Am J Cardiol 1991; 67: 243–247.PubMedCrossRefGoogle Scholar
  26. 26.
    Carlsen J, Toft JC, Mortensen SA, Arendrup H, Aldershvile J, Hesse B. Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients.J Heart Lung Transplant 2000; 19: 873–878.PubMedCrossRefGoogle Scholar
  27. 27.
    Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D, et al. Resting echocardiography and quantitative dipyridamole technetium-99m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation.Eur Heart J 2001; 22: 964–971.PubMedCrossRefGoogle Scholar
  28. 28.
    Elhendy A, Sozzi FB, van Domburg RT, Vantrimpont P, Valkema R, Krenning EP, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis.J Heart Lung Transplant 2000; 19: 360–366.PubMedCrossRefGoogle Scholar
  29. 29.
    Verhoeven PP, Lee FA, Ramahi TM, Franco KL, Mendes de Leon C, Amatruda J, et al. Prognostic value of noninvasive testing one year after orthotopic cardiac transplantation.J Am Coll Cardiol 1996; 28: 183–189.PubMedCrossRefGoogle Scholar
  30. 30.
    Kushwaha SS, Narula J, Narula N, Zervos G, Semigran MJ, Fischman AJ, et al. Pattern of changes over time in myocardial blood flow and microvascular dilator capacity in patients with normally functioning cardiac allografts.Am J Cardiol 1998; 82: 1377–1381.PubMedCrossRefGoogle Scholar
  31. 31.
    Preumont N, Berkenboom F, Vachiery J, Jansens J, Antoine M, Wikler D, et al. Early alterations of myocardial blood flow reserve in heart transplant recipients with an-giographically normal coronary arteries.J Heart Lung Trasplant 2000; 19: 538–545.CrossRefGoogle Scholar
  32. 32.
    Kofoed KF, Czernin J, Lohnson J, Kobashigawa J, Phelps ME, Laks H, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion.Circulation 1997; 95: 600–606.PubMedGoogle Scholar
  33. 33.
    Chan SY, Kobashigawa J, Stevenson LW, Brownfield E, Brunken RC, Scheiben HR. Myocardial blood flow at rest and during pharmacologic vasodilatation in cardiac transplants during and after successful treatment of rejection.Circulation 1994; 90: 204–212.PubMedGoogle Scholar
  34. 34.
    Allen-Auerback M, Schoder H, Johnson J, Kofoed K, Einjorn K, Phelps ME, et al. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients.J Heart Lung Transplant 1999; 18: 211–219.CrossRefGoogle Scholar
  35. 35.
    Rechavia E, De Silva R, Kushawaha SS, et al. Enhanced myocardial18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography.J Am Coll Cardiol 1997; 30; 533–538.PubMedCrossRefGoogle Scholar
  36. 36.
    Bengel FM, Ueberfuhr P, Schiepler N, Nekolla SG, Okada K, Reichart B, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart.Eur J Nucl Med 2000; 27: 1650–1657.PubMedCrossRefGoogle Scholar
  37. 37.
    Bengel FM, Ueberfuhr P, Schiepler N, Nekolla SG, Reichart B, Schwaiger M. Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: a noninvasive study with positron emission tomography.Circulation 2001; 103: 1881–1886.PubMedGoogle Scholar
  38. 38.
    De Marco T, Dae M, Yuen-Green MS, Kumar S, Sudhir K, Keith F, et al. Iodine-123 MIBG scintigraphic assessment of the transplanted human heart: evidence for late reinner-vation.J Am Coll Cardiol 1995; 25: 927–931.PubMedCrossRefGoogle Scholar
  39. 39.
    Schwaiger M, Hutchins GB, Kalff V. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography.J Clin Invest 1991; 87: 1681–1690.PubMedCrossRefGoogle Scholar
  40. 40.
    Dae M, DeMarco T, Botvinick E, O’Connell JW, Hattner RS, Huberty JP, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts: implications and clinical studies.J Nucl Med 1992; 33: 1444–1450.PubMedGoogle Scholar
  41. 41.
    Estorch M, Camprecios M, Flotats A, Mari C, Berna L, Catafau AM, et al. Sympathetic reinnervation of cardiac allografts evaluated by123I-MIBG imaging.J Nucl Med 1999;40:911–916.PubMedGoogle Scholar
  42. 42.
    Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinner-vation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine.Circulation 1999; 99: 1866–1871.PubMedGoogle Scholar
  43. ]43.
    Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, et al. Effects of cardiac sympathetic innervation on coronary blood flow.N Engl J Med 1997; 1208–1215.Google Scholar
  44. 44.
    Bengel FM, Ueberfuhr P, Schiepler N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation.N Engl J Med 2001; 345: 731–738.PubMedCrossRefGoogle Scholar
  45. 45.
    Aparici CM, Narula J, Puig M, Campreciós M, Martín JC, Tembl A, et al. Somatostatin receptor scintigraphy predicts impending cardiac allograft rejection before endomyocardial biopsy.Eur J Nucl Med 2000; 27: 1754–1759.PubMedCrossRefGoogle Scholar
  46. 46.
    Blankenberg F, Narula J, Strauss HW.In vivo detection of apoptotic cell death: a necessary measurement for evaluating therapy for myocarditis, ischemia and heart failure.J Nucl Cardiol 1999; 6: 531–539.PubMedCrossRefGoogle Scholar
  47. 47.
    Puig M, Ballester M, Matias-Guiu X, Bordes R, Carrió I, Kolodgie FD, et al. Burden of myocardial damage in cardiac allograft rejection: scintigraphic evidence of myocardial injury and histologic evidence of myocyte necrosis and apoptosis.J Nucl Cardiol 2000; 7: 132–139.PubMedCrossRefGoogle Scholar
  48. 48.
    Romisch J, Paques EP. Annexins: Calcium binding proteins of multifunctional importance?Med Microbiol Immunol 1991; 180: 109–126.PubMedCrossRefGoogle Scholar
  49. 49.
    van Heerde WL, de Groot PG, Reutelingsperger CPM. The complexity of the phospholipid binding protein annexin V.Thromb and Haemost 1995; 73: 172–179.Google Scholar
  50. 50.
    Narula J, Acio ER, Narula N, et al. Annexin-V imaging for noninvasive detection of cardiac allograft rejection.Nat Med 2001; 7: 1347–1352.PubMedCrossRefGoogle Scholar
  51. 51.
    Kown HM, Strauss HM, Blankenberg FG, et al.In vivo imaging of acute cardiac rejection in human patients using (99m)technetium labeled annexin.Am J Transplant 2001; 1:270–277.PubMedCrossRefGoogle Scholar
  52. 52.
    Blankenberg FG, Katsikis PD, Tait JF, et al. Imaging of apoptosis (programmed cell death) with99mTc annexin V.J Nucl Med 1999; 40: 184–191.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Nuclear MedicineAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations