Greenhouse gas induced climate change

  • Gabriele C. Hegerl
  • Ulrich Cubasch
Review Articles


Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence.

Key words

Climate change climate models models, simulation of climate change climate variability fingerprint method greenhouse gases carbon dioxide methane sulfate aerosols nitrous oxide anthropogenic impact troposphere, temperature natural fluctuations, climate change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, T. P.;M. E. Schlesinger;X. Jiang (1991): On greenhouse gas detection strategies. Greenhouse-Gas-Induced-Climatic Change: A Critical Appraisal of Simulations and Observations.M. E. Schlesinger (Ed.), Elsevier Science Publishers, Amsterdam, 537–558Google Scholar
  2. Callendar, G. S. (1938): The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Met. Soc. 64, 223–235CrossRefGoogle Scholar
  3. Crowley, T. J.;K-Y. Kim (1996): Comarison of proxy records of climate change and solar forcing. Geophys. Res. Letters. 23, 359–362CrossRefGoogle Scholar
  4. Cubasch U.;K. Hasselmann;H. Höck;E. Maier-Reimer;U. Mikolajewicz;B. D. Santer;R. Sausen (1992): Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics 8, 55–69CrossRefGoogle Scholar
  5. Cubasch U.;G. C. Hegerl;A. Hellbach;H. Höck;U. Mikolajewicz;B. D. Santer;R. Voss (1995): A Climate change simulation starting from 1935. Climate Dynamics 11, 71–84CrossRefGoogle Scholar
  6. Hasselmann K. (1993): Optimal fingerprints for the Detection of Time dependent Climate Change. J. Climate 6, 1957–1971CrossRefGoogle Scholar
  7. Hasselmann K.; L. Bengtsson; U. Cubasch; G. C. Hegerl; H. Rodhe; E. Roeckner; H. Von Storch; R. Voss; J. Waszkewitz (1995): Detection of anthropogenic climate change using a fingerprint method. Max-Planck Institut für Meteorologie; Report168 and Proc. “Modern Dynamical Meteorology”, Symposium in Honor of Aksel Wiin-Nielsen, 1995. Ed. P. Ditlevsen (ECMWF press 1995), 203–221Google Scholar
  8. Hegerl, G. C.; H. von Storch; K. Hasselmann; B. D. Santer; U. Cubasch; P. D. Jones (1996): Detecting Greenhouse Gas induced Climate Change with an Optimal Fingerprint Method. J. Climate, in pressGoogle Scholar
  9. Houghton J. T.;B. A. Callander;S. K. Varney (1992): Climate Change 1992. The supplementary report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge, 200 ppGoogle Scholar
  10. Houghton J. T.;L. G. Meira Filho (1996): Climate Change 1995. The IPCC second scientific assessment. Cambridge University Press, Cambridge, 572 ppGoogle Scholar
  11. Jones P. D.;K. R. Briffa (1992): Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details. The Holocene 2, 165–179Google Scholar
  12. Mitchell, J. F. B.;T. J. Johns;J. M. Gregory;S. F. B. Tett (1995): Transient climate response to increasing sulphate aerosols and greenhouse gases. Nature 376, 501–504CrossRefGoogle Scholar
  13. Penner, J. E.;R. J. Charlson;J. M. Hales;N. S. Laulainen;R. Leifer;T. Novakov;J. Ogred;L. F. Radke;S. E. Schwartz;L. Travis (1995): Quantifying and Minimizing the Uncertainty of Climate Forcing by Anthropogenic Aerosols. Bull. Am. Met. Soc. 75, 375–400CrossRefGoogle Scholar
  14. Santer B. D.;K. E. Taylor;J. E. Penner;T. M. L. Wigley;U. Cubasch;P.D. Jones (1995): Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics 12, 77–100CrossRefGoogle Scholar
  15. Santer, B. D.; T. M. L. Wigley; T. P. Barnett; E. Anyamba (1996a): Detection of climate change and attribution of causes. Climate change 1995. The IPCC Second Scientific Assessment. (Ed.) J. T. Houghton et al. 407–444Google Scholar
  16. Santer B. D.; K. E. Taylor; T. M. L. Wigley; P. D. Jones; D. J. Karoly; J. F. B. Mitchell; A. H. Oort; J. E. Penner; V. Ramaswamy; M. D. Schwarzkopf; R. J. Stouffer; S. Tett (1996b): A search for human influences on the thermal structure in the atmosphere. Nature, in pressGoogle Scholar
  17. Stouffer R.J.;S. Manabe;K. Y. Vinnikov (1994): Model assessment of the role of natural variability in recent global warming. Nature 367, 634–636CrossRefGoogle Scholar
  18. von Storch J.; V. Kharin; U. Cubasch; G. C. Hegerl; D. Schriever; H. von Storch; E. Zorita (1996): A 1260-year control integration with the coupled ECHAM1/LSG general circulation model. Submitted to J. ClimateGoogle Scholar
  19. Voss, R.; R. Sausen; U. Cubasch (1996): Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG. Part I: Simulations of the present-day climate. In preparationGoogle Scholar

Copyright information

© Ecomed Publishers 1996

Authors and Affiliations

  • Gabriele C. Hegerl
    • 1
  • Ulrich Cubasch
    • 2
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany
  2. 2.Deutsches KlimarechenzentrumHamburgGermany

Personalised recommendations