Advertisement

Mycotoxin Research

, Volume 24, Issue 2, pp 57–72 | Cite as

Effects of the level of feed intake and ergot contaminated concentrate on ruminal fermentation and on physiological parameters in cows

  • B. Schumann
  • P. Lebzien
  • K. -H. Ueberschär
  • J. Spilke
  • M. Höltershinken
  • S. Dänicke
Article

Abstract

The aim of the present study was to examine the effects of ergot contaminated feed concentrate at differing levels of feed intake on ruminal fermentation, and on various physiological parameters of dairy cows. Twelve double fistulated (in the rumen and the proximal duodenum) Holstein Friesian cows were fed either a control diet (on a dry matter (DM) base: 60% maize silage, 40% concentrate) or a diet containing ergot alkaloids (concentrate contained 2.25% ergot resulting in an ergot alkaloid concentration of the daily ration between 505 and 620 (μg/kg DM) over a period of four weeks. Daily feed amounts were adjusted to the current performance which resulted in a dry matter intake (DMI) variation between 6.0 and 18.5 kg/day. The resulting ergot alkaloid intake varied between 4.1 and 16.3 (μg/kg body weight when the ergot contaminated concentrate was fed.

Concentrations of isovalerate, propionate and ammonia nitrogen in the rumen fluid were significantly influenced by ergot feeding, and the amount of ruminally undegraded protein, as well as the fermentation of neutral detergent fibre, tended to increase with the ergot supplementation at higher levels of feed intake, which might indicate a shift in the microbial population. Other parameters of ruminal fermentation such as ruminai pH, fermented organic matter as a percentage of intake, or the amount of non-ammonia nitrogen measured at the duodenum were not significantly influenced by ergot feeding. The activities of liver enzymes (aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, creatine kinase) in the serum were not affected by ergot feeding. The rectal measured body temperature of the cows significantly increased after ergot administration (p=0.019). Thus, body temperature can be regarded as a sensitive parameter to indicate ergot exposure of dairy cows.

Keywords

dairy cow feed intake rumen fermentation ergot alkaloids body temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landes E (1996) Mutterkorn in Futtermiteln für Rinder. Übers Tierernährg 24: 92–101Google Scholar
  2. 2.
    Seeling K, Lebzien P, Dänicke S, Spilke J, Südekum KH, Flachowsky G (2005) Effects of level of feed intake andFusarium toxin contaminated wheat on rumen fermentation as well as on blood and milk parameters in cows. J Anim Physiol An N 90: 103–115CrossRefGoogle Scholar
  3. 3.
    Wolff J (1992) Mutterkorn in Getreide und Getreideprodukten. In: Ocker HD (ed) Rückstände und Kontaminanten in Getreide und Getreideprodukten. Behr’s Verlag, Hamburg, 113–137Google Scholar
  4. 4.
    Buchta M, Cvak L (1999) Ergot alkaloids and other metabolites of the genusClaviceps. In: Kren V, Cvak L (eds) Ergot: the genusClaviceps. Harwood academic publishers Amsterdam, 173–200Google Scholar
  5. 5.
    Zanzalari KP, Heitmann RN, McLaren JB, Fribourg HA (1989) Effects of endophyte-infected fescue and cimetidine on respiration rates, rectal temperatures and hepatic mixed function oxidase activity as measured by hepatic antipyrine metabolism in sheep. J Anim Sci 67: 3370–3378CrossRefPubMedGoogle Scholar
  6. 6.
    Schmidt SP, Osborne TG (1993) Effects of endophyte infected tall fescue on animal performance. Agr Ecosys Environ 44: 233–262CrossRefGoogle Scholar
  7. 7.
    Jones TA, Ralphs MH, Gardner DR, Chatterton NJ (2000) Cattle prefer endophyte-free robust needlegrass. J Range Manage 53: 427–431CrossRefGoogle Scholar
  8. 8.
    Mcleay LM, Smith BL, Reynolds GW (2002) Cardiovascular, respiratory, and body temperature responses of sheep to the ergopeptides ergotamine and ergovaline. Am J Vet Res 63: 387–393CrossRefPubMedGoogle Scholar
  9. 9.
    Cross D (2003) Ergot alkaloid toxicity. In: Clavicipitalean Fungi: Evolutionary biology, chemistry, biocontrol and cultural impacts. Dekker New York, 475–494Google Scholar
  10. 10.
    Ilha MR, Loretti AP, Barros CS (2003) Hyperthermic syndrome in dairy cattle associated with consumption of ergots ofClaviceps purpurea in southern Brazil. Vet Hum Toxico 145: 140–145Google Scholar
  11. 11.
    Rohr K, Brandt M, Lebzien P, Schafft H (1984) Measurement of duodenal flow in dairy-cows by either total collection or spot sampling, using a special cannula. Can J Anim Sci 64: 116–117CrossRefGoogle Scholar
  12. 12.
    Kalberer F (1970) Absorption, distribution and excretion of [3H]ergotamine in the rat. cited by: Eckert H et al. 1970. Biopharmaceutical aspects. In: Berde B, Schild HO (eds) 1978. Ergot alkaloids and related compounds. Handbuch Experimentelle Pharmakologie 49, Springer-Verlag, New YorkGoogle Scholar
  13. 13.
    Naumann C, Bassler R (1993) Die chemische Untersuchung von Futtermitteln. Darmstadt, VDLUFA-VerlagGoogle Scholar
  14. 14.
    Wolff J, Neudecker C, Klug C, Weber R (1988) Chemical and toxicologic studies of native corn in flour and bread. Z Ernährungswiss 27: 1–22CrossRefPubMedGoogle Scholar
  15. 15.
    Baumann U, Hunziker HR, Zimmerli B (1985) Mutterkornalkaloide in schweizerischen Getreideprodukten. Mitt Gebiete Lebensm Hyg 76: 609–630Google Scholar
  16. 16.
    Ueberschär K-H (1999) Einfluß von Zearalenon auf Wachstum und Rückstände in den Geweben von Mastkaninchen. VDLUFA-Kongreßband 1999, Halle/Saale, VDLUFA-Schriftenreihe 52/1999: 425–428Google Scholar
  17. 17.
    Dänicke S, Ueberschär KH, Halle I, Valenta H, Flachowsky G (2001) Excretion kinetics and metabolism of zearalenone in broilers in dependence on a detoxifying agent. Arch Anim Nutr 55:299–313Google Scholar
  18. 18.
    Williams CH, Iismaa O, David DJ (1962) Determination of Chromic Oxide in Faeces Samples by Atomic Absorption Spectrophotometry. J Agric Sci 59: 381–385CrossRefGoogle Scholar
  19. 19.
    Lebzien P, Paul C (1997) Use of near-infrared reflectance spectroscopy for the estimation of the microbial portion of non-ammonia-nitrogen in the duodenum of dairy cows. Anim Feed Sci Tech 68: 225–233CrossRefGoogle Scholar
  20. 20.
    Goering HJ, Van Soest PJ (1970) Forage fiber analyses. (Apparatus, Reagents, Procedure and some Applications). In: Agricultural Research Service. Agricultural Handbook No 379, Washington, DC, USAGoogle Scholar
  21. 21.
    Geissler Ch, Hoffmann M, Hickel B (1976) Ein Beitrag zur gaschromatographischen Bestimmung flüchtiger Fettsäuren. Arch Tierernahr 76: 123–129CrossRefGoogle Scholar
  22. 22.
    Riemeier A (2004) Einfluß der ruminalen Stickstoffbilanz (RNB) auf die Pansenfermentation, mikrobielle Proteinsynthese, Menge des am Dünndarm anflutenden nutzbaren Proteins (nXP) sowie die Stickstoffausscheidung. Dissertation, Tierärztliche Hochschule HannoverGoogle Scholar
  23. 23.
    Schafft H (1983) Untersuchungen zur Quantifizierung des Abbaus von Futterrohprotein in den Vormägen von Milchkühen. Dissertation, Fachbereich Agrarwissenschaften, Universität GöttingenGoogle Scholar
  24. 24.
    Lebzien P, Voigt J (1999) Calculation of utilizable crude protein at the duodenum of cattle by two different approaches. Arch Anim Nutr 52: 363–369Google Scholar
  25. 25.
    Brandt M, Rohr K (1981) Beiträge zur Quantifizierung der N-Umsetzung in den Vormägen von Milchkühen. 1. Bestimmung des Mikrobenstickstoffs im Duodenalchymus mit Hilfe von N15. Z Tierphysiol - J Anim Physiol An N 46: 39–48Google Scholar
  26. 26.
    Helfferich B, Gütte JO (1972) Tierenährung in Stichworten. Verlag Ferdinand Hirt, Kiel, GermanyGoogle Scholar
  27. 27.
    GfE (2001) Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie: Empfehlungen zur Energieund Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLGVerlag Frankfurt (Main)Google Scholar
  28. 28.
    Wolff J (1989) Mutterkorn in Getreide. In: Getreidekonservierung und Futterschäden durch Getreide. Bayerisches Staatsministerium für Ernährung,Landwirtschaft und Forsten, Referat Landmaschinen und Energiewirtschaft, Grub Heft 30: 28–36Google Scholar
  29. 29.
    Mainka S, Dänicke S, Böhme H, Ueberschär K-H, Liebert F (2007) On the alkaloid content of ergot (Claviceps purpurea). Landbauforsch Völk 57: 51–57Google Scholar
  30. 30.
    Mainka S, Dänicke S, Böhme H, Wolff J, Matthes S, Flachowsky G (2005) Comparative studies on the effect of ergot contaminated feed on performance and health of piglets and chickens. Arch Anim Nutr 59: 81–98CrossRefPubMedGoogle Scholar
  31. 31.
    Miura H, Horiguchi M, Matsumoto T (1980) Nutritional interdependence among rumen bacteria,Bacteroides amylophilus, Megasphaera elsdenii, andRuminococcus albus. Appl Env Microbiol 40: 294–300Google Scholar
  32. 32.
    Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny ofAcremonium and its taxonomic implications. Mycologia 88: 369–383CrossRefGoogle Scholar
  33. 33.
    Paterson J, Forcherio C, Larson B, Samford M, Kerley M (1995) The Effects of Fescue Toxicosis on Beef-Cattle Productivity. J Anim Sci 73: 889–898CrossRefPubMedGoogle Scholar
  34. 34.
    Stuedemann JA, Hill NS, Thompson FN, Fayrer-Hosken RA, Hay WP, Dawe DL, Seman DH, Martin SA (1998) Urinary and biliary excretion of ergot alkaloids from steers that grazed endophyte-infected tall fescue. J Anim Sci 76: 2146–2154CrossRefPubMedGoogle Scholar
  35. 35.
    Schultze AE, Rohrbach BW, Fribourg HA, Waller JC, Oliver JW (1999) Alterations in bovine serum biochemistry profiles associated with prolonged consumption of endophyte-infected tall fescue. Vet Hum Toxicol 41: 133–139PubMedGoogle Scholar
  36. 36.
    Oliver JW (2005) Pathophysiologic response to endophyte toxins. In: Roberts CA, West CP, Spiers DE.Neotyphodium in cool-season grases. Blackwell Publishing, 291–304Google Scholar
  37. 37.
    Westendorf ML, Mitchell GE, Tucker RE, Bush LP, Petroski RJ, Powell RG (1993) In vitro and in vivo ruminal and physiological responses to endophyte-infected tall fescue. J Dairy Sci 76: 555–563CrossRefPubMedGoogle Scholar
  38. 38.
    Stamm MM, DelCurto T, Horney MR, Brandyberry SD, Barton RK (1994) Influence of alkaloid concentration of tall fescue straw on the nutrition, physiology, and subsequent performance of beef steers. J Anim Sci 72: 1068–1075PubMedGoogle Scholar
  39. 39.
    Fisher MJ, Bohnert DW, Ackerman CJ, Schauer CS, DelCurto T, Craig AM, Vanzant ES, Harmon DL, Schrick FN (2004) Evaluation of perennial ryegrass straw as a forage source for ruminants. J Anim Sci 82: 2175–2184CrossRefPubMedGoogle Scholar
  40. 40.
    Fiorito IM, Bunting LD, Davenport GM, Boling JA (1991) Metabolic and endocrine responses of lambs fedAcremonium coenophialum-infected or noninfected tall fescue hay at equivalent nutrient intake. J Anim Sci 69: 2108–2114CrossRefPubMedGoogle Scholar
  41. 41.
    Hannah SM, Paterson JA, Williams JE, Kerley MS, Miner JL (1990) Effects of increasing dietary levels of endophyte-infected tall fescue seed on diet digestibility and ruminal kinetics in sheep. J Anim Sci 68: 1693–1701CrossRefPubMedGoogle Scholar
  42. 42.
    Forth W, Henschler D, Rummel W, Starke K (1992) Allgemeine und spezielle Pharmakologie und Toxikologie. Wissenschaftsverlag Mannheim-Leipzig-Wien-Zürich 6. Auflage, 485Google Scholar
  43. 43.
    Nordskog AW, Clark RT (1945) Ergotism in pregnant sows, female rats and guinea pigs. Am J Vet Res 6: 107–116Google Scholar
  44. 44.
    Ross AD, Bryden WL, Bakau W, Burgess LW (1989) Induction of heat stress in beef cattle by feeding the ergots ofClaviceps purpurea. Aust Vet J 66: 247–249CrossRefPubMedGoogle Scholar
  45. 45.
    Salobir K, Gregorovic V, Martincic M, Karner M, Matjaz M, Oresnik A (1980) Sensitivity of lactating cows to natural ergot alkaloids. In: reports and summeries XI International Congress on Diseases of Cattle, Tel-Aviv, Israel II, 1383–1389Google Scholar
  46. 46.
    Al-Tamimi HJ, Rottinghaus GE, Spiers DE, Spain J, Chatman D, Eichen PA, Carson TL (2003) Thermoregulatory response of dairy cows fed ergotized barley during summer heat stress. J Vet Diagn Invest 15: 355–360CrossRefPubMedGoogle Scholar
  47. 47.
    Moubarak AS, Rosenkrans CF, Jr. (2000) Hepatic metabolism of ergot alkaloids in beef cattle by cytochrome P450. Biochem Biophys Res Commun 274: 746–749CrossRefPubMedGoogle Scholar
  48. 48.
    Cheeke P (2006) The role of the liver in the detoxification of poisonous plants. Plant-associated Toxins 51: 281–286Google Scholar
  49. 49.
    Reichling JJ, Kaplan MM (1988) Clinical use of serum enzymes in liver disease. Digest Sci 33: 1601–1614CrossRefGoogle Scholar
  50. 50.
    Teychenne PF, Jones EA, Ishak KG, Calne DB (1979) Hepatocellular injury with distinctive mitochondrial changes induced by lergotrile mesylate: A dopaminergic ergot derivative. Gastroenterology 76: 575–583PubMedGoogle Scholar
  51. 51.
    Dignean MA, Schiefer HB, Blair R (1986) Effects of feeding ergot-contaminated grain to pregnant and nursing sows. J Vet Med 33: 757–766CrossRefGoogle Scholar
  52. 52.
    Mainka S, Dänicke S, Böhme H, Ueberschär K-H, Polten S, Hüther L (2005) The influence of ergot-contaminated feed on growth and slaughtering performance, nutrient digestibility and carry over of ergot alkaloids in growing-finishing pigs. Arch Anim Nutr 59: 377–395CrossRefPubMedGoogle Scholar
  53. 53.
    Oliver JW, Schultze AE, Rohrbach BW, Fribourg HA, Ingle T, Waller JC (2000) Alterations in hemograms and serum biochemical analytes of steers after prolonged consumption of endophyte-infected tall fescue. J Anim Sci 78: 1029–1035CrossRefPubMedGoogle Scholar
  54. 54.
    Bond J, Powell JB, Undersander DJ, Moe PW, Tyrrell HF, Oltjen RR (1984) Forage composition and growth and physiological-characteristics of cattle grazing several varieties of tall fescue during summer conditions. J Anim Sci 59: 584–593CrossRefGoogle Scholar
  55. 55.
    Clark WG, Clark YL (1980) Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants. Neurosci Biobehav R 4: 281–375CrossRefGoogle Scholar
  56. 56.
    Porter JK (1995) Analysis of endophyte toxins: fescue and other grasses toxic to livestock. J Anim Sci 73: 871–880CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • B. Schumann
    • 1
  • P. Lebzien
    • 1
  • K. -H. Ueberschär
    • 1
  • J. Spilke
    • 2
  • M. Höltershinken
    • 3
  • S. Dänicke
    • 1
  1. 1.Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal HealthBraunschweigGermany
  2. 2.Biometrics and Informatics in Agriculture GroupMartin-Luther UniversityHalle/SaaleGermany
  3. 3.Clinic for CattleUniversity of Veterinary MedicineHannoverGermany

Personalised recommendations